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Environment: Air
System:  flock of birds

QGP

Environment: QGP
System:  Heavy quarks

heavy quarks



Symmetry breaking in open systems
Synchronization

Driven dissipative condensate

Kuramoto model

Metronome, fireflies, …

diehl

Driving force and dissipative 
causes a condensate.

figure is taken from Diehl's website 
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http://www.thp.uni-koeln.de/diehl/research.html


Questions 
Hamiltonian systems

Continuum 
symmetry @µJ

µ = 0

Open systems
@µJ

µ 6= 0 because of friction

What is the symmetry?
Is there any symmetry breaking?

Does a NG mode appear?



Nambu-Goldstone theorem

For Lorentz invariant vacuum
Spontaneous breaking of global symmetry

# of NG modes

Dispersion relation:

NNG = NBS
# of broken symmetries

Nambu(’60), Goldstone(61), Nambu Jona-Lasinio(’61),  
Goldstone, Salam, Weinberg(’62).

http://%09http://link.aps.org/doi/10.1103/PhysRevLett.4.380
http://dx.doi.org/10.1007/BF02812722
http://prola.aps.org/abstract/PR/v122/i1/p345_1
http://%09http://link.aps.org/doi/10.1103/PhysRevLett.4.380
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is described by the quadratic Hamiltonian [13]

H0 = HC + HX + HC�X , (4)

where the parts of the Hamiltonian involving only photons and
excitons, respectively, take the same form, which is given by
(here the index ↵ labels cavity photons, ↵ = C, and excitons,
↵ = X, respectively)2

H↵ =

Z
dq

(2⇡)2

X

�

!↵(q)a†↵,�(q)a↵,�(q). (5)

Field operators a†↵,�(q) and a↵,�(q) create or destroy a photon
or exciton (note that both are bosonic excitations) with in-plane
momentum q and polarization � (there are two polarization
states of the exciton which are coupled to the cavity mode [13]).
For simplicity, we neglect polarization e↵ects leading to an ef-
fective spin-orbit coupling [13]. Due to the confinement in the
transverse (z) direction, i.e., along the cavity axis, the motion of
photons in this direction is quantized as qz,n = ⇡n/lz, where n is
a positive integer, and lz is the length of the cavity. In writing
the Hamiltonian (5), we are assuming that only the lowest trans-
verse mode is populated, which leads to a quadratic dispersion
as a function of the in-plane momentum q = |q| =

q
q2

x + q2
y :

!C(q) = c
q

q2
z,1 + q2 = !0

C +
q2

2mC
+ O(q4). (6)

Here, c is the speed of sound, !0
C = cqz,1, and the e↵ective mass

of the photon is given by mC = qz,1/c. Typically, the value of the
photon mass is orders of magnitude smaller than the mass of the
exciton, so that the dispersion of the latter appears to be flat on
the scale of Fig. 1 (b).

Upon absorption of a photon by the semiconductor, an exciton
is generated. This process (and the reverse process of the emis-
sion of a photon upon radiative decay of an exciton) is described
by

HC�X = ⌦R

Z
dq

(2⇡)2

X

�

⇣
a†X,�(q)aC,�(q) + H.c.

⌘
, (7)

where ⌦R is the rate of the coherent interconversion of photons
into excitons and vice versa. The quadratic Hamiltonian (4) can
be diagonalized by introducing new modes — the lower and
upper exciton-polaritons,  LP,�(q) and  UP,�(q) respectively,
which are linear combinations of photon and exciton modes. The
dispersion of lower and upper polaritons is depicted in Fig. 1
(b). In the regime of strong light-matter coupling, which is
reached when ⌦R is larger than both the rate at which pho-
tons are lost from the cavity due to mirror imperfections and the

2 In Ref. [149, 150], a di↵erent model for excitons is used: they are assumed
to be localized by disorder, and interactions are included by imposing a hard-
core constraint.
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Figure 1. (a) Schematic of two Bragg mirrors forming a microcavity,
in which a quantum well (QW) is embedded. In the regime of strong
light-matter interaction, the cavity photon and the exciton hybridize and
form new eigenmodes, which are called exciton-polaritons. (b) Energy
dispersion of the upper and lower polariton branches as a function of in-
plane momentum q. In the experimental scheme illustrated in this figure
(cf. Ref. [12]), the incident laser is tuned to highly excited states of the
quantum well. These undergo relaxation via emission of phonons and
scattering from polaritons, and accumulate at the bottom of the lower
polariton branch. In the course of the relaxation process, coherence is
quickly lost, and the e↵ective pumping of lower polaritons is incoher-
ent.

non-radiative decay rate of excitons, it is appropriate to think of
exciton-polaritons as the elementary excitations of the system.

In experiments, it is often su�cient to consider only lower
polaritons in a specific spin state, and to approximate the disper-
sion as parabolic [13]. Interactions between exciton-polaritons
originate from various physical mechanisms, with a dominant
contribution stemming from the screened Coulomb interactions
between electrons and holes forming the excitons. Again, in the
low-energy scattering regime, this leads to an e↵ective contact
interaction between lower polaritons. As a result, the low-energy
description of lower polaritons takes the form (in the following
we drop the subscript indices in  LP,�) [13]

HLP =

Z
dx

"
 †(x)

 
!0

LP �
r

2

2mLP

!
 (x) + uc 

†(x)2 (x)2
#
. (8)

While this Hamiltonian is quite generic and arises also, e.g., in
cold bosonic atoms in the absence of an external potential, the
peculiarity of exciton-polaritons is that they are excitations with
relatively short lifetime. In turn, this necessitates continuous re-

chiral symm.

spin symm.

U(1) symm.

translation symm.U(1) 1-form symm. rotation symm. U(1) symm.

Gapless modes in nature
superfluid phonon

spin waves

photon surface waves diffusive modes

Nambu-Goldstone modes

pion

Need generalization

NG theorem OK
We focus on open systems



Classification of  
Nambu-Goldstone modes 

in Hamiltonian system 



Exception of NG theorem
NBS 6= NNG and ! 6= k

Schafer,  Son, Stephanov, Toublan, and Verbaarschot (’01)Miransky, Shovkovy (’02)

Dispersion:
NBS = 3, NNG = 2

NG modes in Kaon condensed CFL phase

SU(2)I ⇥ U(1)Y ! U(1)em

! / k ! / k2and

existNG modes with

Dispersion:

Magnon

NBS = dim(G/H) = 2 NNG = 1

! / k2

spin rotation SO(3) ! SO(2)



Internal symmetry breaking

NBS = dim(G/H)
# of flat direction

G HSymmetry group ⇒

This does work in nonrelativistic system 
at zero and finite temperature



Intuitive example 
for type-B NG modes

Pendulum with a spinning top

Rotation symmetry is explicitly  
broken by a weak gravity

Rotation along with z axis is 
unbroken.

Rotation along with x or y is 
broken.

The number of broken

symmetry is two.



Pendulum has two oscillation motions

if the top is not spinning.

Intuitive example 
for type-B NG modes



If the top is spinning,

the only one rotation motion (Precession) exists.
In this case,  {Lx, Ly}P = Lz 6= 0

Intuitive example 
for type-B NG modes



Type-A Type-B

Classification of NG modes

Harmonic oscillation Precession
NA = NBS � rankh[iQa, Qb]i NB =

1

2
rankh[iQa, Qb]i

Ex. ) superfluid phonon Ex. ) magnon

Watanabe, Murayama (’12), YH (’12)

NNG = NBS � 1

2
hi[Qa, Qb]i

cf.  Takahashi, Nitta (’14), Beekman (’14)

http://prl.aps.org/abstract/PRL/v108/i25/e251602
http://arxiv.org/abs/arXiv:1203.1494


Type-A Type-B

Dispersion relation

! ⇠ p
g ! ⇠ g⇠

p
k2 ⇠ k2

gravity



NBS Ntype-I Ntype-II
1

2
rankh[Qa, Qb]iNBS �NNG

Spin wave in 
ferromanget

SO(3)→SO(2)

2 0 1 1 2
NG modes 


in Kaon 
condensed CFL

SU(2)xSU(1)Y→U(1)em

3 1 1 1 3

Spinor BEC 
SO(3)xU(1)→U(1) 3 1 1 1 3

nonrelativistic 
massive CP1 model


U(1)xR3→R2 2 0 1 1 2

Examples of Type-B NG modes
NBS

1

2
rankh[Qa, Qb]i

NBS �NNG =
1

2
rankh[Qa, Qb]iNtype-A + 2Ntype-B = NBS

Ntype-A Ntype-B Ntype-A + 2Ntype-B



At finite temperature

The interaction with thermal particles 
modifies the dispersion relation

! = ak � ibk2

! = a0k2 � ib0k4
Type-A:
Type-B:

Hayata, YH (’14)
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is described by the quadratic Hamiltonian [13]

H0 = HC + HX + HC�X , (4)

where the parts of the Hamiltonian involving only photons and
excitons, respectively, take the same form, which is given by
(here the index ↵ labels cavity photons, ↵ = C, and excitons,
↵ = X, respectively)2

H↵ =

Z
dq

(2⇡)2

X

�

!↵(q)a†↵,�(q)a↵,�(q). (5)

Field operators a†↵,�(q) and a↵,�(q) create or destroy a photon
or exciton (note that both are bosonic excitations) with in-plane
momentum q and polarization � (there are two polarization
states of the exciton which are coupled to the cavity mode [13]).
For simplicity, we neglect polarization e↵ects leading to an ef-
fective spin-orbit coupling [13]. Due to the confinement in the
transverse (z) direction, i.e., along the cavity axis, the motion of
photons in this direction is quantized as qz,n = ⇡n/lz, where n is
a positive integer, and lz is the length of the cavity. In writing
the Hamiltonian (5), we are assuming that only the lowest trans-
verse mode is populated, which leads to a quadratic dispersion
as a function of the in-plane momentum q = |q| =

q
q2

x + q2
y :

!C(q) = c
q

q2
z,1 + q2 = !0

C +
q2

2mC
+ O(q4). (6)

Here, c is the speed of sound, !0
C = cqz,1, and the e↵ective mass

of the photon is given by mC = qz,1/c. Typically, the value of the
photon mass is orders of magnitude smaller than the mass of the
exciton, so that the dispersion of the latter appears to be flat on
the scale of Fig. 1 (b).

Upon absorption of a photon by the semiconductor, an exciton
is generated. This process (and the reverse process of the emis-
sion of a photon upon radiative decay of an exciton) is described
by

HC�X = ⌦R

Z
dq

(2⇡)2

X

�

⇣
a†X,�(q)aC,�(q) + H.c.

⌘
, (7)

where ⌦R is the rate of the coherent interconversion of photons
into excitons and vice versa. The quadratic Hamiltonian (4) can
be diagonalized by introducing new modes — the lower and
upper exciton-polaritons,  LP,�(q) and  UP,�(q) respectively,
which are linear combinations of photon and exciton modes. The
dispersion of lower and upper polaritons is depicted in Fig. 1
(b). In the regime of strong light-matter coupling, which is
reached when ⌦R is larger than both the rate at which pho-
tons are lost from the cavity due to mirror imperfections and the

2 In Ref. [149, 150], a di↵erent model for excitons is used: they are assumed
to be localized by disorder, and interactions are included by imposing a hard-
core constraint.
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Figure 1. (a) Schematic of two Bragg mirrors forming a microcavity,
in which a quantum well (QW) is embedded. In the regime of strong
light-matter interaction, the cavity photon and the exciton hybridize and
form new eigenmodes, which are called exciton-polaritons. (b) Energy
dispersion of the upper and lower polariton branches as a function of in-
plane momentum q. In the experimental scheme illustrated in this figure
(cf. Ref. [12]), the incident laser is tuned to highly excited states of the
quantum well. These undergo relaxation via emission of phonons and
scattering from polaritons, and accumulate at the bottom of the lower
polariton branch. In the course of the relaxation process, coherence is
quickly lost, and the e↵ective pumping of lower polaritons is incoher-
ent.

non-radiative decay rate of excitons, it is appropriate to think of
exciton-polaritons as the elementary excitations of the system.

In experiments, it is often su�cient to consider only lower
polaritons in a specific spin state, and to approximate the disper-
sion as parabolic [13]. Interactions between exciton-polaritons
originate from various physical mechanisms, with a dominant
contribution stemming from the screened Coulomb interactions
between electrons and holes forming the excitons. Again, in the
low-energy scattering regime, this leads to an e↵ective contact
interaction between lower polaritons. As a result, the low-energy
description of lower polaritons takes the form (in the following
we drop the subscript indices in  LP,�) [13]

HLP =

Z
dx

"
 †(x)

 
!0

LP �
r

2

2mLP

!
 (x) + uc 

†(x)2 (x)2
#
. (8)

While this Hamiltonian is quite generic and arises also, e.g., in
cold bosonic atoms in the absence of an external potential, the
peculiarity of exciton-polaritons is that they are excitations with
relatively short lifetime. In turn, this necessitates continuous re-

http://en.wikipedia.org/wiki/Active_matter#mediaviewer/File:The_flock_of_starlings_acting_as_a_swarm._-_geograph.org.uk_-_124593.jpg


Ex2) Vicsek model
T. Vicsek, et al., PRL (1995).

xi(t+�t) = xi(t) + vi�t

✓i(t+�t) = h✓i(t)ir + ⇠i

velocity

angle of velocity

vi = v0(cos ✓i, sin ✓i)

noiseaverage 
angle

✓

r

r





Some cells on fish skin

An example of SSB in open systems

B. Szabo, et al.,  Phys. Rev. E 74, 061908 (2006)

Model of active matter: Vicseck model, Active hydrodynamics, ….
T. Vicsek, et al., PRL (1995). J. Toner, and Y. Tu, PRL (1995).

high densitylow density



@tv + (v ·r)v = ↵v � �v2v �rP +DLr(r · v) +Dl(v ·r)2v + f

@⇢+r · (⇢v) = 0

Ex.) NG mode in Active hydrodynamics
J. Toner, and Y. Tu, PRE (1998)

noisenonconserved term

! = ck ! = i�k2 NG modes
diffusivepropagating

O(3) ! O(2)

Steady state solution:

v = (v0 + �vx, �vy, �vz)Fluctuation:

v2 = ↵/� ⌘ v20

Symmetry breaking:

Field theoretical model



Can we discuss symmetry breaking 
without ordinary conservation law?



Ex) Symmetry of Brownian motion

d

dt
u(t) = ��u(t) + ⇠(t)

d

dt
x(t) = u(t)

L = x⇥ uAngular momentum
d

dt
hL(t)i = ��hx⇥ u(t)i 6= 0

Langevin equation

h⇠i(t)⇠j(t0)i = 2�ij�T �(t� t0)

not conserved



Langevin equation
d

dt
u(t) = ��u(t) + ⇠(t)

Fokker-Planck equation
@tP (t, u) =

@

@ui

⇣
�T

@

@ui
+ �ui

⌘
P (t, u)

Path integral Martin-Siggia-Rose formalism

Z =

Z
D�DueiS[�,u]

Dynamic action: iS =

Z
dt
h
i�i

⇣ d

dt
ui + �ui

⌘
� T��2

i

i



�i ! Rij�j ui ! Rijuj

O(3) symmetry
with RikRkj = �jk

Symmetry of Dynamic action

Noether charge
LMSR = �⇥ u L = x⇥ u

LMSR 6= L

iS =

Z
dt
h
i�i

⇣ d

dt
ui + �ui

⌘
� T��2

i

i



Open quantum system

�1

�2

time

complex

Schwinger-Keldysh Path integral

cf. for review,  Sieberer, Buchhold, Diehl, 1512.00637

Z =

Z
D�1D�2 exp

h
iS[�1]� iS[�2] + iS12[�1,�2]

i

: Interaction with environment

S[�1]

S[�2]
: forward evolution
: backward evolution 

S12[�1,�2]



Example
Lindblad equation

@t⇢ = �i[H, ⇢] + �

⇣
L⇢L

† � 1

2
(L†

L⇢+ ⇢L
†
L)

⌘

fluctuation and dissipation

Action
S[�] =

1

2
(@µ�)

2 � 1

2
m2�2 � �

4!
�4

iS12[�1,�2] = �L(�1)L
†(�2)�

�

2

⇣
L(�1)L

†(�1) + L(�2)L
†(�2)

⌘



R/A basis

S[�1]� S[�2] =

Z
d4x�A

⇣
�@2

µ�R �m2�R � �

3!
�3
R

⌘
+

Z
d4x

�

24
�3
A�R

�R =
1

2
(�1 + �2) �A = �1 � �2

classical field fluctuation

classical Equation of motion

iS12[�R,�A] = ���A@0�R � A

2
�2
A + · · ·

For example, 



Symmetry of Open quantum system

�1

�2

time

S[�1], S[�2]

Q1, Q2 :Symmetry generators:

QR =
Q1 +Q2

2

QA =
Q1 �Q2

2
Suppose S12[�1,�2]

are invariant.

is invariant under

complex

We also define

Schwinger-Keldysh Path integral
cf. for review,  Sieberer, Buchhold, Diehl, 1512.00637

Z =

Z
D�1D�2 exp

h
iS[�1]� iS[�2] + iS12[�1,�2]

i



Ex1)SU(2)xU(1) model Type-A

�

V (�)

Linear analysis
NG type-A mode

�!2 � i�! + k2 = 0

diffusion mode

(@2
0 + �@0 �r2)⇡a = 0

! =
�i�

2
± i

2

p
�2 � 4k2 ⇠ � i

�
k2,�i� +

i

�
k2

Spontaneous symmetry breaking
Minami, YH (’15)

'R/A two component complex field
'R = (⇡1 + i⇡2, v + h+ i⇡3)

iS =

Z
d4x

h
�†
A(�@2

0 +r2 � �@0)'R � 2�|'R|2'R �A'†
A'A

i
+ · · ·



Ex2)

�

V (�)

with chemical potential μ

✓
�@2

0 � �@0 +r2 2µ@0
�2µ@0 �@2

0 � �@0 +r2

◆✓
⇡1

⇡2

◆
= 0,

SU(2)xU(1)model Type-B

! =
k2

4µ2 + �2
(±2µ� i�)

Spontaneous symmetry breaking
Minami, YH (’15)

iS =

Z
d4x

h
�†
A(�(@0 + iµ)2 +r2 � �@0)'R � 2�|'R|2'R �A'†

A'A

i
+ · · ·

quadratic dispersion
h[iQ1

A, Q
2
R]i 6= 0 Type-B



Ex3)
with complex potential

SU(2)xU(1)model Type-B
Spontaneous symmetry breaking

Minami, YH (’17)

iS =

Z
d4x

⇣
i'†

A((�@2
0 +r2 � (� + 2iµ)@0 �m2

r � im2
i )'R

� 2(�r + i�i)('
†
R'R)'R)�A'†

A'A

⌘
+ · · ·

(!2
0 � 2µ!0 �m2

r � 2�rv
2 + i(�!0 �m2

i � 2�iv
2))v = 0

'R = (0, ve�i!0t)Assuming
Gap equation

Symmetric phase
Broken phase

v = 0

v 6= 0, !0 6= 0



Ex3)
with complex potential

We still have quadratic dispersion

SU(2)xU(1)model Type-B
Spontaneous symmetry breaking

Minami, YH (’17)

! =
k2

4(µ� !0)2 + �2
(±2(µ� !0)� i�)

✓
�@2

0 � �@0 +r2 2(µ� !0)@0
�2(µ� !0)@0 �@2

0 � �@0 +r2

◆✓
⇡1

⇡2

◆
= 0,

Linear analysis

Similarly, we find
! = �i

k2

� + 2(µ� !0)�i/�r

Diffusive mode  for type-A



Minami, YH (’17)

[G�1
⇡ (k)]�↵ = iCµ;�↵kµ + Cµ⌫;�↵kµk⌫ + · · ·

Inverse propagator and dispersion

�i

Z
dDxh[iQ↵

R,L12(x)]j
�µ
A (0)i⇡c

� lim
k!0

@

@k⌫
i

Z
dDxeik⇢x

⇢

h[iQ↵
R,L12(x)]j

�µ
A (0)i⇡c

Cµ;�↵ = �h[iQ↵
R, j

�µ
A (0)]i

Cµ⌫;�↵ = i

Z
dDxhj↵µR (x)j�⌫A (0)i⇡c

Hamiltonian systemOpen system



Our result is too general

Need to impose symmetry of S12

Ex)’Standard’ Fokker-Plank eq.
Type-A mode

! = �ik2�Diffusive
Type-B mode
! = ak2 � ik2�0

Next step: classification

NB =
1

2
rankh[iQ↵

R, Q
�
A]iNA = NBS � rankh[iQ↵

R, Q
�
A]i



Spontaneous breaking of 
 symmetry of Dynamic action

Type-A mode
! = �ik2�Diffusive

Type-B mode
! = ak2 � ik2�0

Two-type of diffusive NG modes

Next step: classification

Summary



Type
Dispersion

Conserved charge Examples
Re Im

A

k k2 QA, QR Superfluid, etc.

0 k2 QA

flock of birds,

Exciton-polariton 

condensates

B 
<[QA, QR ]>≠0

k2 k4 QA, QR Ferromagnet

k2 k2 QA

Spinor BEC in open 
quantum system? 

Magnetotactic bacteria?

What is the condition satisfying this table?



Magnetotactic bacteria
Collective motion of 

Possible active matter  
with type B modes?


