
November 9, 2017 @ NTU

QCD Matter in 
Neutron Star Environments

Kenji Fukushima 
  

The University of Tokyo 

Workshop of Recent Developments in QCD and QFT

1



2

Neutron Star (NS) Constraint(s)



November 9, 2017 @ NTU

Neutron Star Constraint

3

common feature of models that include the appearance of ‘exotic’
hadronic matter such as hyperons4,5 or kaon condensates3 at densities
of a few times the nuclear saturation density (ns), for example models
GS1 and GM3 in Fig. 3. Almost all such EOSs are ruled out by our
results. Our mass measurement does not rule out condensed quark
matter as a component of the neutron star interior6,21, but it strongly
constrains quark matter model parameters12. For the range of allowed
EOS lines presented in Fig. 3, typical values for the physical parameters
of J1614-2230 are a central baryon density of between 2ns and 5ns and a
radius of between 11 and 15 km, which is only 2–3 times the
Schwarzschild radius for a 1.97M[ star. It has been proposed that
the Tolman VII EOS-independent analytic solution of Einstein’s
equations marks an upper limit on the ultimate density of observable
cold matter22. If this argument is correct, it follows that our mass mea-
surement sets an upper limit on this maximum density of
(3.74 6 0.15) 3 1015 g cm23, or ,10ns.

Evolutionary models resulting in companion masses .0.4M[ gen-
erally predict that the neutron star accretes only a few hundredths of a
solar mass of material, and result in a mildly recycled pulsar23, that is
one with a spin period .8 ms. A few models resulting in orbital para-
meters similar to those of J1614-223023,24 predict that the neutron star
could accrete up to 0.2M[, which is still significantly less than the
>0.6M[ needed to bring a neutron star formed at 1.4M[ up to the
observed mass of J1614-2230. A possible explanation is that some
neutron stars are formed massive (,1.9M[). Alternatively, the trans-
fer of mass from the companion may be more efficient than current
models predict. This suggests that systems with shorter initial orbital
periods and lower companion masses—those that produce the vast
majority of the fully recycled millisecond pulsar population23—may
experience even greater amounts of mass transfer. In either case, our
mass measurement for J1614-2230 suggests that many other milli-
second pulsars may also have masses much greater than 1.4M[.
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Figure 3 | Neutron star mass–radius diagram. The plot shows non-rotating
mass versus physical radius for several typical EOSs27: blue, nucleons; pink,
nucleons plus exotic matter; green, strange quark matter. The horizontal bands
show the observational constraint from our J1614-2230 mass measurement of
(1.97 6 0.04)M[, similar measurements for two other millisecond pulsars8,28

and the range of observed masses for double neutron star binaries2. Any EOS
line that does not intersect the J1614-2230 band is ruled out by this
measurement. In particular, most EOS curves involving exotic matter, such as
kaon condensates or hyperons, tend to predict maximum masses well below
2.0M[ and are therefore ruled out. Including the effect of neutron star rotation
increases the maximum possible mass for each EOS. For a 3.15-ms spin period,
this is a =2% correction29 and does not significantly alter our conclusions. The
grey regions show parameter space that is ruled out by other theoretical or
observational constraints2. GR, general relativity; P, spin period.
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parameters, with MCMC error estimates, are given in Table 1. Owing to
the high significance of this detection, our MCMC procedure and a
standard x2 fit produce similar uncertainties.

From the detected Shapiro delay, we measure a companion mass of
(0.500 60.006)M[, which implies that the companion is a helium–
carbon–oxygen white dwarf16. The Shapiro delay also shows the binary

system to be remarkably edge-on, with an inclination of 89.17u6 0.02u.
This is the most inclined pulsar binary system known at present. The
amplitude and sharpness of the Shapiro delay increase rapidly with
increasing binary inclination and the overall scaling of the signal is
linearly proportional to the mass of the companion star. Thus, the
unique combination of the high orbital inclination and massive white
dwarf companion in J1614-2230 cause a Shapiro delay amplitude
orders of magnitude larger than for most other millisecond pulsars.
In addition, the excellent timing precision achievable from the pulsar
with the GBT and GUPPI provide a very high signal-to-noise ratio
measurement of both Shapiro delay parameters within a single orbit.

The standard Keplerian orbital parameters, combined with the known
companion mass and orbital inclination, fully describe the dynamics of a
‘clean’ binary system—one comprising two stable compact objects—
under general relativity and therefore also determine the pulsar’s mass.
We measure a pulsar mass of (1.97 6 0.04)M[, which is by far the high-
est precisely measured neutron star mass determined to date. In contrast
with X-ray-based mass/radius measurements17, the Shapiro delay pro-
vides no information about the neutron star’s radius. However, unlike the
X-ray methods, our result is nearly model independent, as it depends
only on general relativity being an adequate description of gravity.
In addition, unlike statistical pulsar mass determinations based on
measurement of the advance of periastron18–20, pure Shapiro delay mass
measurements involve no assumptions about classical contributions to
periastron advance or the distribution of orbital inclinations.

The mass measurement alone of a 1.97M[ neutron star signifi-
cantly constrains the nuclear matter equation of state (EOS), as shown
in Fig. 3. Any proposed EOS whose mass–radius track does not inter-
sect the J1614-2230 mass line is ruled out by this measurement. The
EOSs that produce the lowest maximum masses tend to be those which
predict significant softening past a certain central density. This is a
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Figure 1 | Shapiro delay measurement for PSR
J1614-2230. Timing residual—the excess delay
not accounted for by the timing model—as a
function of the pulsar’s orbital phase. a, Full
magnitude of the Shapiro delay when all other
model parameters are fixed at their best-fit values.
The solid line shows the functional form of the
Shapiro delay, and the red points are the 1,752
timing measurements in our GBT–GUPPI data set.
The diagrams inset in this panel show top-down
schematics of the binary system at orbital phases of
0.25, 0.5 and 0.75 turns (from left to right). The
neutron star is shown in red, the white dwarf
companion in blue and the emitted radio beam,
pointing towards Earth, in yellow. At orbital phase
of 0.25 turns, the Earth–pulsar line of sight passes
nearest to the companion (,240,000 km),
producing the sharp peak in pulse delay. We found
no evidence for any kind of pulse intensity
variations, as from an eclipse, near conjunction.
b, Best-fit residuals obtained using an orbital model
that does not account for general-relativistic effects.
In this case, some of the Shapiro delay signal is
absorbed by covariant non-relativistic model
parameters. That these residuals deviate
significantly from a random, Gaussian distribution
of zero mean shows that the Shapiro delay must be
included to model the pulse arrival times properly,
especially at conjunction. In addition to the red
GBT–GUPPI points, the 454 grey points show the
previous ‘long-term’ data set. The drastic
improvement in data quality is apparent. c, Post-fit
residuals for the fully relativistic timing model
(including Shapiro delay), which have a root mean
squared residual of 1.1ms and a reduced x2 value of
1.4 with 2,165 degrees of freedom. Error bars, 1s.
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Figure 2 | Results of the MCMC error analysis. a, Grey-scale image shows the
two-dimensional posterior probability density function (PDF) in the M2–i
plane, computed from a histogram of MCMC trial values. The ellipses show 1s
and 3s contours based on a Gaussian approximation to the MCMC results.
b, PDF for pulsar mass derived from the MCMC trials. The vertical lines show
the 1s and 3s limits on the pulsar mass. In both cases, the results are very well
described by normal distributions owing to the extremely high signal-to-noise
ratio of our Shapiro delay detection. Unlike secular orbital effects (for example
precession of periastron), the Shapiro delay does not accumulate over time, so
the measurement uncertainty scales simply as T21/2, where T is the total
observing time. Therefore, we are unlikely to see a significant improvement on
these results with currently available telescopes and instrumentation.
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Demorest et al. (2010)

Precise determination of  
NS mass using Shapiro delay

1.928(17) Msun

(slightly changed in 2016)

(J1614-2230)

2.01(4) Msun (PSRJ0348+0432)
Antoniadis et al. (2013)
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A two-solar-mass neutron star measured using
Shapiro delay
P. B. Demorest1, T. Pennucci2, S. M. Ransom1, M. S. E. Roberts3 & J. W. T. Hessels4,5

Neutron stars are composed of the densest form of matter known
to exist in our Universe, the composition and properties of which
are still theoretically uncertain. Measurements of the masses or
radii of these objects can strongly constrain the neutron star matter
equation of state and rule out theoretical models of their composi-
tion1,2. The observed range of neutron star masses, however, has
hitherto been too narrow to rule out many predictions of ‘exotic’
non-nucleonic components3–6. The Shapiro delay is a general-relat-
ivistic increase in light travel time through the curved space-time
near a massive body7. For highly inclined (nearly edge-on) binary
millisecond radio pulsar systems, this effect allows us to infer the
masses of both the neutron star and its binary companion to high
precision8,9. Here we present radio timing observations of the binary
millisecond pulsar J1614-223010,11 that show a strong Shapiro delay
signature. We calculate the pulsar mass to be (1.97 6 0.04)M[, which
rules out almost all currently proposed2–5 hyperon or boson con-
densate equations of state (M[, solar mass). Quark matter can sup-
port a star this massive only if the quarks are strongly interacting and
are therefore not ‘free’ quarks12.

In March 2010, we performed a dense set of observations of J1614-
2230 with the National Radio Astronomy Observatory Green Bank
Telescope (GBT), timed to follow the system through one complete
8.7-d orbit with special attention paid to the orbital conjunction, where
the Shapiro delay signal is strongest. These data were taken with the newly
built Green Bank Ultimate Pulsar Processing Instrument (GUPPI).
GUPPI coherently removes interstellar dispersive smearing from the
pulsar signal and integrates the data modulo the current apparent pulse
period, producing a set of average pulse profiles, or flux-versus-rota-
tional-phase light curves. From these, we determined pulse times of
arrival using standard procedures, with a typical uncertainty of ,1ms.

We used the measured arrival times to determine key physical para-
meters of the neutron star and its binary system by fitting them to a
comprehensive timing model that accounts for every rotation of the
neutron star over the time spanned by the fit. The model predicts at
what times pulses should arrive at Earth, taking into account pulsar
rotation and spin-down, astrometric terms (sky position and proper
motion), binary orbital parameters, time-variable interstellar disper-
sion and general-relativistic effects such as the Shapiro delay (Table 1).
We compared the observed arrival times with the model predictions,
and obtained best-fit parameters by x2 minimization, using the
TEMPO2 software package13. We also obtained consistent results
using the original TEMPO package. The post-fit residuals, that is,
the differences between the observed and the model-predicted pulse
arrival times, effectively measure how well the timing model describes
the data, and are shown in Fig. 1. We included both a previously
recorded long-term data set and our new GUPPI data in a single fit.
The long-term data determine model parameters (for example spin-
down rate and astrometry) with characteristic timescales longer than
a few weeks, whereas the new data best constrain parameters on
timescales of the orbital period or less. Additional discussion of the

long-term data set, parameter covariance and dispersion measure vari-
ation can be found in Supplementary Information.

As shown in Fig. 1, the Shapiro delay was detected in our data with
extremely high significance, and must be included to model the arrival
times of the radio pulses correctly. However, estimating parameter values
and uncertainties can be difficult owing to the high covariance between
many orbital timing model terms14. Furthermore, the x2 surfaces for the
Shapiro-derived companion mass (M2) and inclination angle (i) are often
significantly curved or otherwise non-Gaussian15. To obtain robust error
estimates, we used a Markov chain Monte Carlo (MCMC) approach to
explore the post-fit x2 space and derive posterior probability distributions
for all timing model parameters (Fig. 2). Our final results for the model

1National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, Virginia 22093, USA. 2Astronomy Department, University of Virginia, Charlottesville, Virginia 22094-4325, USA. 3Eureka
Scientific, Inc., Oakland, California 94602, USA. 4Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, 7990 AA Dwingeloo, The Netherlands. 5Astronomical Institute ‘‘Anton Pannekoek’’,
University of Amsterdam, 1098 SJ Amsterdam, The Netherlands.

Table 1 | Physical parameters for PSR J1614-2230
Parameter Value

Ecliptic longitude (l) 245.78827556(5)u
Ecliptic latitude (b) 21.256744(2)u
Proper motion in l 9.79(7) mas yr21

Proper motion in b 230(3) mas yr21

Parallax 0.5(6) mas
Pulsar spin period 3.1508076534271(6) ms
Period derivative 9.6216(9) 3 10221 s s21

Reference epoch (MJD) 53,600
Dispersion measure* 34.4865 pc cm23

Orbital period 8.6866194196(2) d
Projected semimajor axis 11.2911975(2) light s
First Laplace parameter (esin v) 1.1(3) 3 1027

Second Laplace parameter (ecos v) 21.29(3) 3 1026

Companion mass 0.500(6)M[
Sine of inclination angle 0.999894(5)
Epoch of ascending node (MJD) 52,331.1701098(3)
Span of timing data (MJD) 52,469–55,330
Number of TOAs{ 2,206 (454, 1,752)
Root mean squared TOA residual 1.1 ms

Right ascension (J2000) 16 h 14 min 36.5051(5) s
Declination (J2000) 222u 309 31.081(7)99
Orbital eccentricity (e) 1.30(4) 3 1026

Inclination angle 89.17(2)u
Pulsar mass 1.97(4)M[
Dispersion-derived distance{ 1.2 kpc
Parallax distance .0.9 kpc
Surface magnetic field 1.8 3 108 G
Characteristic age 5.2 Gyr
Spin-down luminosity 1.2 3 1034 erg s21

Average flux density* at 1.4 GHz 1.2 mJy
Spectral index, 1.1–1.9 GHz 21.9(1)
Rotation measure 228.0(3) rad m22

Timing model parameters (top), quantities derived from timing model parameter values (middle) and
radio spectral and interstellar medium properties (bottom). Values in parentheses represent the 1s

uncertainty in the final digit, asdeterminedbyMCMCerror analysis. The fit includedboth ‘long-term’ data
spanning seven years and new GBT–GUPPI data spanning three months. The new data were observed
using an 800-MHz-wide band centred at a radio frequency of 1.5GHz. The raw profiles were polarization-
and flux-calibrated and averaged into 100-MHz, 7.5-min intervals using the PSRCHIVE software
package25, from which pulse times of arrival (TOAs) were determined. MJD, modified Julian date.
*These quantities vary stochastically on >1-d timescales. Values presented here are the averages for
our GUPPI data set.
{Shown in parentheses are separate values for the long-term (first) and new (second) data sets.
{Calculated using the NE2001 pulsar distance model26.
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Equation of State (unknown)

M-R Relation (observed)

Pressure : p 
Mass density : r p = p(⇢)

NS mass : M 
NS radius : R

Tolman-Oppenheimer-  
-Volkoff (TOV) Eqs

Mathematically one-to-one correspondence

gravity

pressure diff(Energy density : " = ⇢c2)

M = M(⇢
max

)

R = R(⇢
max

)
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Old Picture

µ

P Nuclear EoS

Quark EoS

r

P
Soft

Stiff

It is hard to see if there is a 
1st-order transition or not 
from the M-R relation, but 
a flat behavior can be 
reconstructed mathematically
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Lindblom (1992)

Some simple test cases : useful for a 1st-order transition?

Test data set by hand

Solve TOV

Reconstructed

Yes, it is useful, in principle

Thanks to Y. Fujimoto
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IF there is a 1st-order phase transition with large density gap  
(i.e. strong 1st-order) at small densities,

EoS cannot be stiff enough to support massive NS

Remember: the slope is bounded by causality, and cannot 
                     exceed the speed of light.

Strong 1st-order transition excluded, which means…
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Alford et al. (2015)

Constraining and applying a generic high-density equation of state

Mark G. Alford1, G. F. Burgio2, S. Han (È�)1, G. Taranto2,3, and D. Zappalà2
1Physics Department, Washington University, Saint Louis, Missouri 63130, USA

2 INFN Sezione di Catania, Via Santa Sofia 64, 95123 Catania, Italy and
3Dipartimento di Fisica e Astronomia, Universitá di Catania, Via Santa Sofia 64, 95123 Catania, Italy

(Dated: 1 Oct 2015)

We discuss the “constant speed of sound” (CSS) parametrization of the equation of state of high-density mat-
ter and its application to the field correlator method (FCM) model of quark matter. We show how observational
constraints on the maximum mass and typical radius of neutron stars are expressed as constraints on the CSS
parameters. We find that the observation of a 2M� star already severely constrains the CSS parameters, and is
particularly difficult to accommodate if the squared speed of sound in the high-density phase is assumed to be
around 1/3 or less.

We show that the FCM equation of state can be accurately represented by the CSS parametrization, which
assumes a sharp transition to a high-density phase with density-independent speed of sound. We display the
mapping between the FCM and CSS parameters, and see that FCM only allows equations of state in a restricted
subspace of the CSS parameters.

PACS numbers: 25.75.Nq, 26.60.-c, 97.60.Jd

I. INTRODUCTION

There are many models of matter at density significantly
above nuclear saturation density, each with their own param-
eters. In studying the equation of state (EoS) of matter in this
regime it is therefore useful to have a general parametrization
of the EoS which can be used as a generic language for relat-
ing different models to each other and for expressing experi-
mental constraints in model-independent terms. In this work
we use the previously proposed “constant speed of sound”
(CSS) parametrization [1–3] (for applications, see, e.g., [4]).
We show how mass and radius observations can be expressed
as constraints on the CSS parameters. Here we analyze a spe-
cific example, where the high-density matter is quark matter
described by a model based on the field correlator method
(Sec. IV), showing how its parameters can be mapped on to
the CSS parameter space, and how it is constrained by cur-
rently available observations of neutron stars.

The CSS parametrization is applicable to high-density
equations of state for which (a) there is a sharp interface be-
tween nuclear matter and a high-density phase which we will
call quark matter, even when (as in Sec. II) we do not make
any assumptions about its physical nature; and (b) the speed
of sound in the high-density matter is pressure-independent
for pressures ranging from the first-order transition pressure
up to the maximum central pressure of neutron stars. One can
then write the high-density EoS in terms of three parameters:
the pressure ptrans of the transition, the discontinuity in energy
density De at the transition, and the speed of sound cQM in the
high-density phase. For a given nuclear matter EoS eNM(p),
the full CSS EoS is then

e(p) =
⇢

eNM(p) p < ptrans
eNM(ptrans)+De + c�2

QM(p� ptrans) p > ptrans
(1)

The CSS form can be viewed as the lowest-order terms of
a Taylor expansion of the high-density EoS about the tran-
sition pressure. Following Ref. [1], we express the three

parameters in dimensionless form, as ptrans/etrans, De/etrans
(equal to l � 1 in the notation of Ref. [5]) and c2

QM, where
etrans ⌘ eNM(ptrans).

The assumption of a sharp interface will be valid if, for ex-
ample, there is a first-order phase transition between nuclear
and quark matter, and the surface tension of the interface is
high enough to ensure that the transition occurs at a sharp in-
terface (Maxwell construction) not via a mixed phase (Gibbs
construction). Given the uncertainties in the value of the sur-
face tension [6–8], this is a possible scenario. One can also
formulate generic equations of state that model interfaces that
are smeared out by mixing or percolation [9–11].

The assumption of a density-independent speed of sound is
valid for a large class of models of quark matter. The CSS
parametrization is an almost exact fit to some Nambu–Jona-
Lasinio models [2, 12–14]. The perturbative quark matter
EoS [15] also has roughly density-independent c2

QM, with a
value around 0.2 to 0.3 (we use units where h̄ = c = 1), above
the transition from nuclear matter (see Fig. 9 of Ref. [16]).
In the quartic polynomial parametrization [17], varying the
coefficient a2 between ±(150MeV)2, and the coefficient a4
between 0.6 and 1, and keeping ntrans/n0 above 1.5 (n0 ⌘
0.16fm�3 is the nuclear saturation density), one finds that c2

QM
is always between 0.3 and 0.36. It is noticeable that mod-
els based on relativistic quarks tend to have c2

QM ⇡ close to
1/3, which is the value for systems with conformal symmetry,
and it has been conjectured that there is a fundamental bound
c2

QM < 1/3 [18], although some models violate that bound,
e.g. [19, 20] or [14] (parametrized in [2]).

In Sec. II we show how the CSS parametrization is con-
strained by observables such as the maximum mass Mmax, the
radius of a maximum-mass star, and the radius R1.4 of a star
of mass 1.4M�. In Secs. III–IV we describe a specific model,
based on a Brueckner-Hartree-Fock (BHF) calculation of the
nuclear matter EoS and the field correlator method (FCM) for
the quark matter EoS. We show how the parameters of this
model map on to part of the CSS parameter space, and how
the observational constraints apply to the FCM model param-
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FIG. 2: (Color online). Contour plots showing the maximum hybrid star mass as a function of the CSS parameters of the high-density EoS.
Each panel shows the dependence on the CSS parameters ptrans/etrans and De/etrans. The left plots are for c2

QM = 1/3, and the right plots are
for c2

QM = 1. The top row is for a DHBF (stiff) nuclear matter EoS, and the bottom row is for a BHF (soft) nuclear matter EoS. The grey
shaded region is excluded by the measurement of a 2M� star. The hatched band at low density (where ntrans < n0) is excluded because bulk
nuclear matter would be metastable. The hatched band at high density is excluded because the transition pressure is above the central pressure
of the heaviest stable hadronic star.

lows a wider range of CSS parameters to be compatible with
the 2M� measurement.

In Fig. 2 the dot-dashed (red) contours are for hybrid stars
on a connected branch, while the dashed (blue) contours are
for disconnected branches. As discussed in Ref. [1], when
crossing the near-horizontal boundary from region C to B
the connected hybrid branch splits into a smaller connected
branch and a disconnected branch, so the maximum mass of
the connected branch smoothly becomes the maximum mass
of the disconnected branch. Therefore the red contour in the
C region smoothly becomes a blue contour in the B and D
regions. When crossing the near-vertical boundary from re-
gion C to B a new disconnected branch forms, so the con-
nected branch (red dot-dashed) contour crosses this boundary

smoothly.
In each panel of Fig. 2, the physically relevant allowed re-

gion is the white unshaded region. The grey shaded region is
excluded by the existence of a 2M� star. We see that increas-
ing the stiffness of the hadronic EoS or of the quark matter
EoS (by increasing c2

QM) shrinks the excluded region.
For both the hadronic EoSs that we study, the CSS param-

eters are significantly constrained. From the two left panels
of Fig. 2 one can see that if, as predicted by many models,
c2

QM . 1/3, then we are limited to two regions of parame-
ter space, corresponding to a lowpressure transition or a high
pressure transition. In the low-transition-pressure region the
transition occurs at a fairly low density ntrans . 2n0, and a
connected hybrid branch is possible. In the high-transition-

Okay if…
QM only at very high density 
1st trans. at very high density 
1st trans. very weak 
NM EoS very stiff 
etc, etc

Looks generic, but 
a bit misleading to say…
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Caveats
Based on the old picture of 1st-order transition to QM
Is there any reason to require 1st-order transition? NO!
Based on the extrapolation of NM EoS to high densities
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apart from an infamous  
   causality problem…
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IF nucleons are surrounded by interaction clouds of pions, 
such clouds undergo a classical percolation transition at

1.4 n0
Percolation transition  
allows for mobility  
enhancement of quarks?

Quantum fluctuations  
(Anderson localization) 
induce “confinement” 
(quantum percolation)

(Picture of H. Satz)
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One may think that the constraint may be strong for light NS
BUT…

R is fixed by TOV with p(R)=0 and interestingly…

dp/dr(r = R) = 0

d2p/dr2(r = R) / M2/R2

If M is small or R is large,  
uncertainty becomes huge.

People do not care assuming that NS mass > 1.2 Msun

Very uncertain  
“by definition”
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Here, NS-NS merger will not be discussed, but  
another constraint is already available:

2

deformability between polytropes and “realistic” EOS.
In this paper, we calculate the deformability for realistic
EOS, and show that a tidal signature is actually only
marginally detectable with Advanced LIGO.

In Sec. II we describe how the Love number and tidal
deformability can be calculated for tabulated EOS. We
use the equations for k

2

developed in [15], which arise
from a linear perturbation of the Oppenheimer-Volko↵
(OV) equations of hydrostatic equilibrium. In Sec. III we
then calculate k

2

and � as a function of mass for several
EOS commonly found in the literature. We find that,
in contrast to the Love number, the tidal deformability
has a wide range of values, spanning roughly an order of
magnitude over the observed mass range of neutron stars
in binary systems.

As discussed above, the direct practical importance of
the stars’ tidal deformability for gravitational wave ob-
servations of NS binary inspirals is that it encodes the
EOS influence on the waveform’s phase evolution during
the early portion of the signal, where it is accurately mod-
eled by post-Newtonian (PN) methods. In this regime,
the influence of tidal e↵ects is only a small correction to
the point-mass dynamics. However, when the signal is
integrated against a theoretical waveform template over
many cycles, even a small contribution to the phase evo-
lution can be detected and could give information about
the NS structure.

Following [11], we calculate in Sec. IV the measurabil-
ity of the tidal deformability for a wide range of equal-
and unequal- mass binaries, covering the entire expected
range of NS masses and EOS, and with proposed detector
sensitivity curves for second- and third- generation detec-
tors. We show that the measurability of � is quite sensi-
tive to the total mass of the system, with very low-mass
neutron stars contributing significant phase corrections
that are optimistically detectable in Advanced LIGO,
while larger-mass neutron stars are more di�cult to dis-
tinguish from the k

2

= 0 case of black holes [16, 17]. In
third-generation detectors, however, the tenfold increase
in sensitivity allows a finer discrimination between equa-
tions of state leading to potential measurability of a large
portion of proposed EOSs over most of the expected neu-
tron star mass range.

We conclude by briefly considering how the errors
could be improved with a more careful analysis of the
detectors and extension of the understanding of EOS ef-
fects to higher frequencies.

Finally, in the Appendix we compute the leading or-
der EOS-dependent corrections to our model of the tidal
e↵ect and derive explicit expressions for the resulting cor-
rections to the waveform’s phase evolution, extending the
analysis of Ref. [11]. Estimates of the size of the phase
corrections show that the main source of error are post-
1 Newtonian corrections to the Newtonian tidal e↵ect
itself, which are approximately twice as large as other,
EOS-dependent corrections at a frequency of 450 Hz.
Since these point-particle corrections do not depend on
unknown NS physics, they can easily be incorporated into

the analysis. A derivation of the explicit post-Newtonian
correction terms is the subject of Ref. [18].

Conventions: We set G = c = 1.

II. CALCULATION OF THE LOVE NUMBER
AND TIDAL DEFORMABILITY

As in [11] and [15], we consider a static, spherically
symmetric star, placed in a static external quadrupolar
tidal field Eij . To linear order, we define the tidal de-
formability � relating the star’s induced quadrupole mo-
ment Qij to the external tidal field,

Qij = ��Eij . (1)

The coe�cient � is related to the l = 2 dimensionless
tidal Love number k

2

by

k
2

=
3
2
�R�5. (2)

The star’s quadrupole moment Qij and the external
tidal field Eij are defined to be coe�cients in an asymp-
totic expansion of the total metric at large distances r
from the star. This expansion includes, for the met-
ric component gtt in asymptotically Cartesian, mass-
centered coordinates, the standard gravitational poten-
tial m/r, plus two leading order terms arising from the
perturbation, one describing an external tidal field grow-
ing with r2 and one describing the resulting tidal distor-
tion decaying with r�3:

� (1 + gtt)
2

= �m

r
� 3Qij

2r3

ninj + . . . +
Eij

2
r2ninj + . . . ,

(3)

where ni = xi/r and Qij and Eij are both symmetric and
traceless. The relative size of these multipole components
of the perturbed spacetime gives the constant � relating
the quadrupole deformation to the external tidal field as
in Eq. (1).

To compute the metric (3), we use the method dis-
cussed in [15]. We consider the problem of a linear static
perturbation expanded in spherical harmonics following
[19]. Without loss of generality we can set the azimuthal
number m = 0, as the tidal deformation will be axisym-
metric around the line connecting the two stars which
we take as the axis for the spherical harmonic decompo-
sition. Since we will be interested in applications to the
early stage of binary inspirals, we will also specialize to
the leading order for tidal e↵ects, l = 2.

Introducing a linear l = 2 perturbation onto the spher-
ically symmetric star results in a static (zero-frequency),
even-parity perturbation of the metric, which in the
Regge-Wheeler gauge [20] can be simplified [15] to give

ds2 = �e2�(r) [1 + H(r)Y
20

(✓,')] dt2

+e2⇤(r) [1�H(r)Y
20

(✓,')] dr2

+r2 [1�K(r)Y
20

(✓,')]
�

d✓2 + sin2 ✓d'2

�

,

(4)
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the influence of tidal e↵ects is only a small correction to
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lution can be detected and could give information about
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tron star mass range.

We conclude by briefly considering how the errors
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e↵ect and derive explicit expressions for the resulting cor-
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analysis of Ref. [11]. Estimates of the size of the phase
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itself, which are approximately twice as large as other,
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Since these point-particle corrections do not depend on
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tidal field Eij . To linear order, we define the tidal de-
formability � relating the star’s induced quadrupole mo-
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tidal field Eij are defined to be coe�cients in an asymp-
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from the star. This expansion includes, for the met-
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centered coordinates, the standard gravitational poten-
tial m/r, plus two leading order terms arising from the
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ing with r2 and one describing the resulting tidal distor-
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where ni = xi/r and Qij and Eij are both symmetric and
traceless. The relative size of these multipole components
of the perturbed spacetime gives the constant � relating
the quadrupole deformation to the external tidal field as
in Eq. (1).

To compute the metric (3), we use the method dis-
cussed in [15]. We consider the problem of a linear static
perturbation expanded in spherical harmonics following
[19]. Without loss of generality we can set the azimuthal
number m = 0, as the tidal deformation will be axisym-
metric around the line connecting the two stars which
we take as the axis for the spherical harmonic decompo-
sition. Since we will be interested in applications to the
early stage of binary inspirals, we will also specialize to
the leading order for tidal e↵ects, l = 2.

Introducing a linear l = 2 perturbation onto the spher-
ically symmetric star results in a static (zero-frequency),
even-parity perturbation of the metric, which in the
Regge-Wheeler gauge [20] can be simplified [15] to give
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(tidal deformability) ⇤(1.4M�) < 800

� =

quadrupole moment

external tidal field

Hinderer et al. (2009)

(~ Love number)

Often divided by M5 to make it dimensionless → L

See: Annala-Gorda-Kurkela-Vuorinen (2017)
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Gravitational-wave constraints on the neutron-star-matter Equation of State

Eemeli Annala,1 Tyler Gorda,1 Aleksi Kurkela,2 and Aleksi Vuorinen1

1Department of Physics and Helsinki Institute of Physics,
P.O. Box 64, FI-00014 University of Helsinki, Finland

2Theoretical Physics Department, CERN, Geneva, Switzerland and
Faculty of Science and Technology, University of Stavanger, 4036 Stavanger, Norway

The LIGO/Virgo detection of gravitational waves originating from a neutron-star merger,
GW170817, has recently provided new stringent limits on the tidal deformabilities of the stars
involved in the collision. Combining this measurement with the existence of two-solar-mass stars,
we generate the most generic family of neutron-star-matter Equations of State (EoSs) that inter-
polate between state-of-the-art theoretical results at low and high baryon density. Comparing to
results from similar calculations prior to the tidal deformability constraint, we witness a dramatic
reduction in the family of allowed EoSs. Based on our analysis, we conclude that the maximal radius
of a 1.4-solar-mass is 13.4 km, and that smallest allowed tidal deformability of a similar mass star
is ⇤(1.4M�) = 224.

I. INTRODUCTION

The collective properties of the strongly-interacting
dense matter found inside neutron stars (NS) are noto-
riously di�cult to predict [1, 2]. While the Sign Prob-
lem prevents lattice Monte-Carlo simulations at nonzero
chemical potentials [3], nuclear-theory tools such as Chi-
ral E↵ective Theory (CET) are limited to sub-saturation
densities [4] and perturbative QCD (pQCD) becomes re-
liable only at much higher densities [5]. No controlled,
first-principles calculations are applicable at densities en-
countered inside the stellar cores.

Despite the above di�culties, it is possible to obtain
robust information on the properties of neutron-star mat-
ter at core densities. In particular, the requirement that
the Equation of State (EoS) must reach its known low-
and high-density limits while behaving in a thermody-
namically consistent fashion in between poses a strong
constraint on its form. This was demonstrated, e.g., in
[6, 7], where a family of EoSs was constructed that in-
terpolate between a CET EoS below saturation density
and a pQCD result at high densities. This family quan-
tifies the purely theoretical uncertainty on the EoS at
intermediate densities, but the quantity can be further
constrained using observational information about the
macroscopic properties of NSs.

The first significant constraint for the EoS comes from
the observation of two-solar-mass (2M�) stars [8, 9], im-
plying that the corresponding mass-radius curve has to
be able to support massive enough stars, M

max

> 2M�.
This requires that the EoS be sti↵ enough, which in com-
bination with the fact that the high-density EoS is rather
soft (with c2s . 1/3, where cs is the speed of sound) lim-
its the possible behavior of the quantity at intermediate
densities. In particular, it was shown in [6, 7] that —
upon imposing the 2M� constraint — the current un-
certainty in the EoS when expressed in the form p(µB),
where p is the pressure and µB is the baryon chemical
potential, is ±40% at worst.

On 16 October 2017, the LIGO and Virgo collabo-
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FIG. 1: The mass-radius clouds corresponding to our EoSs.
The cyan area corresponds to EoSs that cannot support a
2M� star, while the rest denote EoSs that fulfill this re-
quirement and in addition have ⇤(1.4M�) < 400 (green),
400 < ⇤(1.4M�) < 800 (violet), or ⇤(1.4M�) > 800 (red), so
that the red region is excluded by the LIGO/Virgo measure-
ment at 90% credence. This color coding is used in all of our
figures. The dotted black lines denote the result that would
have been obtained with bitropic interpolation only.

rations reported the first event, GW170817, where a
gravitational-wave (GW) signal was observed from a
merger of two compact stars [10]. Remarkably, this very
first set of GW data has already o↵ered a second con-
straint for the behavior of NS matter. The inspiral phase
of a NS-NS merger creates extremely strong tidal grav-
itational fields that deform the multipolar structure of
the stars, which in turn leaves a detectable imprint on
the observed gravitational waveform of the merger. This
e↵ect can be quantified in terms of the so-called tidal de-
formabilities ⇤ of the stars [11, 12], which measure the
degree to which their shape and structure is modified
during the inspiral. Assuming a low-spin prior for both
stars involved in the merger (for details, see [10]), LIGO
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What is Known from Theory ?



November 9, 2017 @ NTU

What is known from theory?

15

Chemical Potential  μNuclear Superfluid B

Almost nothing…

Fukushima-Sasaki (2013)
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Most important lesson from high-T low-r QCD matter

QCD transition from hadronic to quark-gluon matter 
is a continuous crossover with an overlapping region 
(dual region) of hadrons and of quarks and gluons

 HRG Lattice

Quark Matter 2014 (Fukushima)

pQCD
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A hint to understand a crossover

N N

¼

Baryon int. at large Nc

⇠ O(Nc)

Pressure of large-Nc NM  
scales as ~ O(Nc) as if  
it were QM.
Quark d.o.f. perceived  
through interactions even  
in baryonic matter

Quarkyonic Matter

McLerran-Pisarski (2007)

NM and QM indistinguishable !?
Hidaka, Kojo, etc…
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Another hint to understand a crossover

Chiral symmetry more broken at higher density

hq̄qi 6= 0Nuclear Matter hNNi 6= 0

Quark Matter hqRqRi 6= 0 hqLqLi 6= 0

breaks SU(Nf )R breaks SU(Nf )L

Vectorial rotation can be canceled by color rot.

SU(Nf )R ⇥ SU(Nf )L ⇥ U(1)V ! SU(Nf )V

Color superconducting QM has the same symmetry as NM
Schaefer-Wilczek (1998)NM and QM indistinguishable indeed
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All excitations must be continuously connected…

Hyper Nuclear Matter CFL

BEC of colorless H BEC of colored qq BCS

pion

phason

small

qq

qq
_

qq
__

qq
q
_qq

__

qq

qqq

qqq

qq qq

qq

qq qq

none (apart from UA(1) breaking)

q q

q
_

q q

q q

q q µ

Fukushima (2003)

q

qq q qq q

q
qq
qq

Alford-Baym-Fukushima- 
-Hatsuda-Tachibana (2017)
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µ

P

NM EoS

(So far best) Bottom-up Approach

QM EoS

Smooth Interpolation

Little ambiguity

Well constrained  
but still ambiguous

Masuda, Hatsuda, Takatsuka, Kojo, Baym, …

NJL 
QCD
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You may wonder if pQCD works at high density?

Freedman-McLerran (1977)

Kurkela-Romatschke-Vuorinen (2009)

Baluni (1978) ⇠ O(↵2
s)

⇠ O(↵2
s) +ms23

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
µ [GeV]

0.2
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3 flavor
2+1 flavor

Λ=µΛ=2µ

Λ=4µ

Nf=2, µ→∞

FIG. 5: The total quark number density evaluated to O(α2
s) for locally charge neutral systems of

2 and 3 massless quark flavors, as well as for the two light and one massive flavor case (’2+1’).
All results are normalized to the density of three free massless flavors 3µ3/π2, and assume the

values ΛMS = 0.378 GeV, m(2GeV) = 0.1 GeV, while the renormalization scale takes the values
3Λ̄/(µu + µd + µs) = 1, 2, 4 (for Nf = 2, 2Λ̄/(µu + µd) = 1, 2, 4). As expected, the 2+1 flavor
result matches the three flavor result at large µ and approaches the two flavor result at small µ.

convergence for µ > 1 GeV, in analogy with the massless case. Somewhat visible in Fig. 5
are kinks at the critical chemical potentials at which the strange quark density drops to
zero, and below which the quark matter is net strange quark free. We suspect that this
is simply a consequence of not having enough energy to produce strange quarks with a
non-vanishing in-medium mass: The chemical potential is required to satisfy the condition
µ > mmedium(µs), where the parameter mmedium(µ) can be evaluated by studying the effects
of the finite chemical potential on the poles of a massive quark propagator. A study of
the one-loop quark self energy at finite temperature was recently performed in Ref. [57] (cf.
[58]), and a simple generalization of these results to finite µ shows that for gµ ≪ M ≪ µ,
the mass can be approximated by the formula

mmedium(Λ̄, µ) ∼
√

m2 +
8αs

3π
µ2 +O(α2

s) > m . (69)

This leads us to argue that the chemical potential at which the strange quark density vanishes
does not need to receive large non-perturbative corrections, as instead of confinement physics
only energy conservation is involved in the mechanism. As a consequence, we can expect
perturbative results to give quantitatively reasonable estimates for this critical chemical
potential, at least if Λ̄ > 1 GeV at this point (cf. the discussion in Section IIB).

Moving up on the chemical potential axis, we note that for µ >∼ 1 GeV, the strange quark
mass becomes unimportant and one recovers the result of three massless flavors, discussed
in Section IVB. Interestingly, studying the O(α0

s) and O(αs) quark number densities, one
observes the trend that the effects of the strange quark mass become less important with

Convergence seems to be good  
(as compared to high-T)

This is not resummed perturbation  
but very naive expansion
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Bayesian Analysis

P (A|B)P (B) = P (B|A)P (A)

(Bayes’ theorem)

B : M-R Observation 
A : EoS Parameters

Want to know

Normalization

Likelihood
Calculable by TOV

prior
Model

Model must be assumed. 
EoS parametrization must be introduced. 
Integration in parameter space must be defined.
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4

Fig. 2.— (Top) Inferred equation of state and mass-radius curve from a sample of mock data, assuming a uniform prior distribution
of pressures. The mock data are drawn from the nucleonic EoS SLy (Douchin & Haensel 2001) and are dithered with Gaussian noise
corresponding to �M = 0.1M�, �R = 0.5 km. The actual curves for SLy are shown in black. The magenta curve represents the most likely
EoS inferred via our Bayesian method. The 68% credibility region is shown in gray. (Middle) Identical to top panel, but with our Gaussian
regularizer included in the inversion. (Bottom) Identical data to the top two panels, but assuming a prior distribution that is uniform

in the logarithm of pressure and including a Gaussian regularizer. Assuming a uniform distribution leads to a preference towards high
pressures in the regions where there are few data to constrain the inversion, while assuming that the pressures are distributed uniformly
in the logarithm leads to a preference towards lower pressures. Including the Gaussian regularizer reduces the sensitivity to the choice of
prior.

Fig. 3.— Individual mass-radius curves contributing to the shape
of the 68% credibility region in the top panel Fig. 2. A few indi-
vidual curves are shown here to emphasize the fact that not all
curves that can be drawn through this region will actually have
likelihoods within the 68% interval.

of �
R

= 0.5 km and �
M

= 0.1 M�. EoS SLy is par-
ticularly challenging for a parametrization like ours that
is optimized for potentially more complex EoS because
it is practically a single polytrope in the density range
of interest. We, therefore, use this example to explore
the strengths and limits of the inference as well as of the
regularizer.
The black lines in Fig. 2 represent the EoS SLy, while

the magenta lines show the most-likely inferred EoS
found with our Bayesian method. The gray bands rep-
resent the 68% credibility regions. For five-dimensional
likelihoods, the 68% credibility region is defined as the
region where

Z Z Z Z Z

P (P
1

, ..., P
5

|data)dP
1

dP
2

dP
3

dP
4

dP
5

= 0.68, (15)

exactly analogous to the lower-dimensional case. It
should be noted that these credibility regions show the
spread of possible solutions only, and should not be over-
interpreted. That is, there are many curves that may be

Raithel-Ozel-Psaltis (2017) Mock data (SLy + Noises)

Prior 
Dep.
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What we want to have ideally is…

Several M-R 
observation points  
with errors

Several parameters  
to characterize EoS

Optimized  
 Mapping

{Mi, Ri} {Pi}{Pi} = F ({Mi, Ri})

Generate many random EoSs {P} and solve TOV to have {M,R} 
Assume an Ansatz for F with sufficiently many fitting parameters 
Tune parameters to fit {EoS, MR} correspondance 
Test the validity of F with independent {EoS, MR} data
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This process is precisely how we develop our intuition!

If we see many (input → output) data, 
we will eventually have good intuition  
to guess input by looking at output

(Supervised) Learning = Parameter Tuning

What should be the Ansatz for the fitting function?
Simple “activation” functions are layered (like our brains)

In principle, any non-linear mapping can be represented
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FIG. 1. Feedforward neural network.

an educated guess from a given output to the most likely
input. This procedure mimics how our brains work; we
learn things from our past experiences. The advantage
of the machine learning, as compared to ordinary fitting
procedures, is that we would not rely on preknowledge
about fitting functions but the multi layer structures are
capable of capturing any functions (or functionals) by
themselves.

The model function of feedforward neural networks can
generally be expressed in the following form:
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For the actual optimization procedure we should

choose a “loss function” which is to be minimized; if the
loss function is the mean square deviation, the learning
amounts to the standard least square method.

The most important is that, if the activation functions
and their combinations are properly chosen, the neural

networks with multi layers can in principle represent any
complicated nonlinear mapping.

Generating training data: For better learning, the
quality of training data is important, as is the case for
our brains to learn something. For the training purpose
we should not bias data from physical reasonability too
much, but intuitively unnatural data should be also in-
cluded to raise a more adaptive machine. Now, let us
explain how we have prepared training data which con-
sist of randomly generated EoS and corresponding mass-
radius observation points (M
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).
First, we elucidate our scheme for EoS generation. Up
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an initial condition, m = 0, r = 0, and h = h
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(where a
choice of h
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corresponds to a choice of the central core
density) until h hits zero. Then, we immediately identify
M = m(h = 0) and R = r(h = 0) to infer the M -R
relation [which is easier than solving the condition p(r =
R) = 0]. For each randomly generated EoS we solve
the TOV equations to find the miximum mass M

max

. If
M

max

does not reach the observed mass [which we took a
conservative estimate, i.e. 1.97M� from the lower bound
of (2.01 ± 0.04)M�], such an EoS is rejected from the
ensemble. In this work 89 out of 2000 EoSs are rejected
and we use remaining 1911 EoSs.
Then, for each set of the EoS and the correspondingM -

R relation, we sample 15 observation points of (M
i

, R

i

).
Here, this choice of 15 is simply for the present demon-
stration purpose, so it should be adjusted according to
the number of available neutron star observations. [So
far, how many?] For better training quality, we should
make unbiased sampling of 15 data points, and here, we
assume a uniform distribution of M over [M�, Mmax

].
If there are multiple values of R corresponding to an
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an educated guess from a given output to the most likely
input. This procedure mimics how our brains work; we
learn things from our past experiences. The advantage
of the machine learning, as compared to ordinary fitting
procedures, is that we would not rely on preknowledge
about fitting functions but the multi layer structures are
capable of capturing any functions (or functionals) by
themselves.

The model function of feedforward neural networks can
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the TOV equations to find the miximum mass M

max

. If
M

max

does not reach the observed mass [which we took a
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an educated guess from a given output to the most likely
input. This procedure mimics how our brains work; we
learn things from our past experiences. The advantage
of the machine learning, as compared to ordinary fitting
procedures, is that we would not rely on preknowledge
about fitting functions but the multi layer structures are
capable of capturing any functions (or functionals) by
themselves.

The model function of feedforward neural networks can
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structure is schematically depicted in Fig. 1, in which the
calculation proceeds from the left with the initial input
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} to the right with the final output {y
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For the actual optimization procedure we should

choose a “loss function” which is to be minimized; if the
loss function is the mean square deviation, the learning
amounts to the standard least square method.

The most important is that, if the activation functions
and their combinations are properly chosen, the neural

networks with multi layers can in principle represent any
complicated nonlinear mapping.

Generating training data: For better learning, the
quality of training data is important, as is the case for
our brains to learn something. For the training purpose
we should not bias data from physical reasonability too
much, but intuitively unnatural data should be also in-
cluded to raise a more adaptive machine. Now, let us
explain how we have prepared training data which con-
sist of randomly generated EoS and corresponding mass-
radius observation points (M
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density) until h hits zero. Then, we immediately identify
M = m(h = 0) and R = r(h = 0) to infer the M -R
relation [which is easier than solving the condition p(r =
R) = 0]. For each randomly generated EoS we solve
the TOV equations to find the miximum mass M
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. If
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does not reach the observed mass [which we took a
conservative estimate, i.e. 1.97M� from the lower bound
of (2.01 ± 0.04)M�], such an EoS is rejected from the
ensemble. In this work 89 out of 2000 EoSs are rejected
and we use remaining 1911 EoSs.
Then, for each set of the EoS and the correspondingM -
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Here, this choice of 15 is simply for the present demon-
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an educated guess from a given output to the most likely
input. This procedure mimics how our brains work; we
learn things from our past experiences. The advantage
of the machine learning, as compared to ordinary fitting
procedures, is that we would not rely on preknowledge
about fitting functions but the multi layer structures are
capable of capturing any functions (or functionals) by
themselves.
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amounts to the standard least square method.
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and their combinations are properly chosen, the neural
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Generating training data: For better learning, the
quality of training data is important, as is the case for
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conservative estimate, i.e. 1.97M� from the lower bound
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stration purpose, so it should be adjusted according to
the number of available neutron star observations. [So
far, how many?] For better training quality, we should
make unbiased sampling of 15 data points, and here, we
assume a uniform distribution of M over [M�, Mmax

].
If there are multiple values of R corresponding to an

ReLU

2

FIG. 1. Feedforward neural network.

an educated guess from a given output to the most likely
input. This procedure mimics how our brains work; we
learn things from our past experiences. The advantage
of the machine learning, as compared to ordinary fitting
procedures, is that we would not rely on preknowledge
about fitting functions but the multi layer structures are
capable of capturing any functions (or functionals) by
themselves.

The model function of feedforward neural networks can
generally be expressed in the following form:
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where {x
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} and {y
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} are input and output data, respec-

tively, and {W (k)
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(k)
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} are fitting parameters to be op-
timized through the training process, where (k) refers to
parameters on the k-th layer among all L layers. The
concrete form of f

i

a↵ects the learning e�ciency. For the

first layer, the input is set as x(1)
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) with
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being the size of the input data, {x
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}. For the next
layers, the transformations are iteratively applied as
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with N

k+1

being the node num-

ber. The final output from the L-th layer is y

i

= x

(L)

i

(1  i  N

L

) with N

L

being the size of the output
data, {y

i

}. Here, �(k)(x)’s are called “activation func-
tions” and the typical choices include the sigmoid func-
tion �(x) = 1/(ex + 1), the ReLU �(x) = max{0, x}, hy-
perbolic tangent �(x) = tanh(x), etc. The general design
structure is schematically depicted in Fig. 1, in which the
calculation proceeds from the left with the initial input
{x

i

} to the right with the final output {y
i

}.
For the actual optimization procedure we should

choose a “loss function” which is to be minimized; if the
loss function is the mean square deviation, the learning
amounts to the standard least square method.

The most important is that, if the activation functions
and their combinations are properly chosen, the neural

networks with multi layers can in principle represent any
complicated nonlinear mapping.

Generating training data: For better learning, the
quality of training data is important, as is the case for
our brains to learn something. For the training purpose
we should not bias data from physical reasonability too
much, but intuitively unnatural data should be also in-
cluded to raise a more adaptive machine. Now, let us
explain how we have prepared training data which con-
sist of randomly generated EoS and corresponding mass-
radius observation points (M

i

, R
i

).
First, we elucidate our scheme for EoS generation. Up

to the normal nuclear density, ⇢
0

, we use a conventional
nuclear EoS (i.e. SLy in the present study but this choice
makes only a small di↵erence) and we equally partition a
range [⇢

0

, 8⇢
0

] into five sections. Then, we randomly as-
sign the sound velocity c

2

s

to these five sections according
to the uniform distribution over a range, 0 < c

2

s

< c

2, so
that we can numerically generate c

2

s

(⇢). Then, we calcu-
late the pressure from p(⇢) =

R
⇢

0

d⇢

0
c

2

s

(⇢0). We note that
we allow for small c

2

s

which corresponds to a (nearly)
first-order phase transition. In the present study we gen-
erated 2000 EoSs in this way.
Next, we solve the TOV equations using the generated

p(⇢). For the TOV equations the following form is the
most convenient, in which the mass and the radius are
functions of the enthalpy density, h(p) =

R
p

0

dp

0
/[⇢(p0) +

p

0], given by

dm

dh

= �4⇡⇢(h)r3(r � 2m)

m+ 4⇡r3p(h)
, (3)

dr

dh

= � r(r � 2m)

m+ 4⇡r3p(h)
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where G = 1 in our unit. We solve these equations from
an initial condition, m = 0, r = 0, and h = h

c

(where a
choice of h

c

corresponds to a choice of the central core
density) until h hits zero. Then, we immediately identify
M = m(h = 0) and R = r(h = 0) to infer the M -R
relation [which is easier than solving the condition p(r =
R) = 0]. For each randomly generated EoS we solve
the TOV equations to find the miximum mass M

max

. If
M

max

does not reach the observed mass [which we took a
conservative estimate, i.e. 1.97M� from the lower bound
of (2.01 ± 0.04)M�], such an EoS is rejected from the
ensemble. In this work 89 out of 2000 EoSs are rejected
and we use remaining 1911 EoSs.
Then, for each set of the EoS and the correspondingM -

R relation, we sample 15 observation points of (M
i

, R

i

).
Here, this choice of 15 is simply for the present demon-
stration purpose, so it should be adjusted according to
the number of available neutron star observations. [So
far, how many?] For better training quality, we should
make unbiased sampling of 15 data points, and here, we
assume a uniform distribution of M over [M�, Mmax

].
If there are multiple values of R corresponding to an

tanh
Backpropagation
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For good learning, the “textbook” choice is important…

Training data (200000 sets in total)
Randomly generate 5 sound velocities → EoS × 2000 sets
Solve TOV to identify the corresponding M-R curve
Randomly pick up 15 observation points × (ns = 100) sets

(The machine learns the M-R data have error fluctuations)

Validation data (200 sets)
Generate independently of the training data

(with �M = 0.1M�, �R = 0.5 km)
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Layer index Nodes Activation

1 30 N/A

2 60 ReLU

3 40 ReLU

4 40 ReLU

5 5 tanh

TABLE I. Our neural network design in this work. In the 1st
layer 30 nodes correspond to 15 points of the mass and the
radius. In the 5th layer 5 nodes correspond to 5 parameters
of the EoS.

M , we always take larger R discarding thermodynami-
cally unstale branch. In this way we pick up 15 points

of (M (0)

i

, R

(0)

i

) on the M -R relation. We also want to
let the machine learn that the true observation data
contain errors, �M and �R, which makes data points
away from the genuine M -R relation. Now we randomly
generate �M

i

and �R

i

according to the normal distri-
bution with variances, 0.1M� and 0.5km for the mass
and the radius, respectively. This choice of variances
should be also adjusted according to the real error esti-
mate from observations. Now we get the training data

set, (M
i

= M

(0)

i

+�M

i

, R

i

= R

(0)

i

+�R

i

), which we call
an “observation” in this study. We repeat this procedure
to make 100 observations (this choice can be arbitrary if
large enough for learning) for each EoS, and after all, we
have prepared (1911 EoSs)⇥(100 observations) = 191100
training data in this present work.

Learning procedures: For numerics we make use of a
Python library called Keras with TensorFlow as a back-
end. The design of our neural networks is summarized in
Tab. I. Our purpose is to construct a machine that can
give us one EoS in the output side in response to one
observation which consists of 15 sets of (M

i

, R
i

) in the
input side. Thus, in the 1st layer 30 nodes should match
15 M -R points, i.e. 30 data in total. For the practical
reason we sort 30 data points by their masses in ascend-
ing order. The output nodes for the prediction target at
the layer index 5 correspond to 5 (sound velocity) pa-
rameters characterizing an EoS, and we have 3 hidden
layers between the input and the output. We find that
the learning proceeds faster if the data are normalized
appropriately; we normalize the data as M

i

/M

norm

and
R

i

/R

norm

with M

norm

= 3M� and R

norm

= 20 km.

We choose the activation function at the output layer
as �(5)(x) = tanh(x) since the speed of sound is automat-
ically bounded in the physical range [0, 1]. For other lay-
ers we simply choose the ReLU, i.e. �(k)(x) = max{0, x}
(k = 2, 3, 4). We specify the loss function as msle, that
is, the mean square log of prediction errors and choose
the fitting method as Adams with the batch size 1000.

We have tuned this machine design based on a num-
ber of trials and performance tests. To capture the

FIG. 2. Loss function estimated for the training data (dashed
lines) and the validation data (solid lines) as functions of the
epoch.

essence of the problem, the complexity of layers and
nodes should be su�ciently large. At the same time, to
avoid the overlearning problem (which will be discussed
soon later), and also to complete training of the neural
network within a reasonable time, the number of param-
eters should not be too large.

Performance test: The machine is optimized to fit the
training data, but it must have a predictive power for
data that is independent of the training data. To this end
we need “validation data” which can be regarded as mock
data for the neutron star observation. We generate 200
EoSs, and 188 out of 200 EoSs pass the massive neutron
star condition. Unlike the training data, we creat just
one observation for each EoS (not 100 for the training
data) to mimic real situation.

In general, the loss function monotonically decreases
with larger learning step which counts the number of
data scan and is called epoch. This decreasing behavior
is caused simply with the fitting parameters adjusted to
minimize the loss function. A small value of the loss func-
tion, however, does not necessarily guarantee the learning
quality. Figure 2 shows the loss function for the training
data (dashed lines) and the validation data (solid lines).

In Fig. 2 the red lines represent the results with the
entire training data, i.e. 191100 sets. We see that the
learning is complete within a few epochs only. This quick
learning is accelerated by 100 observations, that is, 100
random samplings for each EoS. In this sense, our pre-
scription to deal with observation errors has an extra
benefit for the learning e�ciency. Also, we choose the
batch size to be 1000, and so one epoch implicitly in-
volves 19 averaging procedures.

To confirm the above in explicit calculations, just for
the test purpose, we reduce the observation number n

s

from 100 (with the batch size 1000) to 10 (with the batch

Our Neural Network Design

Probably we don’t need such many hidden layers  
and such many nodes… anyway, this is one  
working example…
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With fluctuations in the training data, the learning is quick! 
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“Loss Function"  
= deviation from the  
    true answers

Monotonically decrease  
for the training data, but  
not necessarily so for  
the validation data

Once the overlearning occurs,  
the performance gets worse!
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Test with the validation data 
(parameters not optimized to fit the validation data) 4
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FIG. 3. Two examples of the randomly generated EoSs
(dashed lines) and the machine learning outputs (solid lines)
reconstructed from 15 data points.

size 100) and 1 (with the batch size 10) to draw green
lines and blue lines, respectively, in Fig. 2. It is clear that
the learning process is more often stuck at local minima
for fewer observation number. Interestingly, moreover,
the validation loss function for n

s

= 1 shows pathologi-
cal behavior due to overlearning; it increases for epochs
> 1000, while the training loss function continues to de-
crease. Such significant separation of two training and
validation loss functions is a signature for overlearning
and then the predicted output could largely deviate from
the true answer.

Once the loss function converges, we can use the
trained neural networks to infer an EoS from an obser-
vation (i.e. one set of 15 data points). We picked two
examples up to make Fig. 3. Later, we will quantify the
overall performance, but for the moment we shall discuss
these examples. In Fig. 3 the dashed lines represent ran-
domly generated EoSs. We see that two EoSs are iden-
tical in the low density region, which is because in our
boundary condition a conventional nuclear EoS (SLy in
our choice) is employed for ⇢  ⇢

0

. We sampled 15 data
points near the corresponding M -R relations, as shown
in Fig. 4. Each set of 15 data points can be considered
as mock data of the neutron star observation. We em-
phasize that these data points may not necessarily on
the genuine M -R curve, but the trained neural networks
should already know it. From the observation of 15 data
points, the most likely EoS is reconstructed, which is
depicted by solid lines in Fig. 3. We can see that the re-
constructed EoSs agree quite well with the original EoSs
for these two examples. It would be also interesting to
make a comparison on the M -R relations as well. The
solid lines in Fig. 4 represent the M -R relations calcu-
lated with the reconstructed EoSs in Fig. 3. Naturally,
since the EoSs already look consistent in Fig. 3, the true
and reconstructed M -R relations are close to each other.

FIG. 4. Randomly sampled 15 data points and the M -R
relation with the reconstructed EoS. The red and blue colors
correspond to two EoSs shown with the same color in Fig. 3.

Mass (M�) Raw RMS (km) Filtered RMS (km)

0.8 0.90 0.15

1.0 0.90 0.21

1.2 0.90 0.23

1.4 0.91 0.25

1.6 1.06 0.25

1.8 1.10 0.27

TABLE II. Root mean square of radius deviations for fixed
masses.

We checked whether the reconstruction works or not
for 188 validation data. Then, we found that the overall
agreement is fairly good, as we saw in Figs. 3 and 4, for
a majority of data, but about 15% of data result in sin-
gular behavior; the reconstructed M -R curve blows up
and does not have any trace of the original one, which is
typical behavior of overlearning. In this case, however,
the singular behavior occurs since some peculiar distri-
bution of M -R data points is not excluded in our random
generator. For the training purpose it would be better to
include them, but for the validation purpose it would not
make sense to check the performance for unphysical data.
In the present analysis there is almost no ambiguity to
exclude unphysical data; when it works, it works good,
and when it does not work, it obviously breaks down.

In Tab. II we give the root mean square (RMS) of
radius deviations using 188 validation data for fixed
masses. We defined the RMS from the deviations be-
tween not the observation data points but the genuine
M -R relation and the one from the reconstructed EoS
(as shown by solid lines in Fig. 4), that is, �R(M) =
R

(rec)(M)�R

(0)(M). Even without any exceptional pro-
cesses, the raw RMS values are around ⇠ 1 km for all
masses as seen in Tab. II, which already indicates that
our method works good especially in view of the fact that
data points have random fluctuations by �R ⇠ 0.5 km.

4

FIG. 3. Two examples of the randomly generated EoSs
(dashed lines) and the machine learning outputs (solid lines)
reconstructed from 15 data points.

size 100) and 1 (with the batch size 10) to draw green
lines and blue lines, respectively, in Fig. 2. It is clear that
the learning process is more often stuck at local minima
for fewer observation number. Interestingly, moreover,
the validation loss function for n

s

= 1 shows pathologi-
cal behavior due to overlearning; it increases for epochs
> 1000, while the training loss function continues to de-
crease. Such significant separation of two training and
validation loss functions is a signature for overlearning
and then the predicted output could largely deviate from
the true answer.

Once the loss function converges, we can use the
trained neural networks to infer an EoS from an obser-
vation (i.e. one set of 15 data points). We picked two
examples up to make Fig. 3. Later, we will quantify the
overall performance, but for the moment we shall discuss
these examples. In Fig. 3 the dashed lines represent ran-
domly generated EoSs. We see that two EoSs are iden-
tical in the low density region, which is because in our
boundary condition a conventional nuclear EoS (SLy in
our choice) is employed for ⇢  ⇢

0

. We sampled 15 data
points near the corresponding M -R relations, as shown
in Fig. 4. Each set of 15 data points can be considered
as mock data of the neutron star observation. We em-
phasize that these data points may not necessarily on
the genuine M -R curve, but the trained neural networks
should already know it. From the observation of 15 data
points, the most likely EoS is reconstructed, which is
depicted by solid lines in Fig. 3. We can see that the re-
constructed EoSs agree quite well with the original EoSs
for these two examples. It would be also interesting to
make a comparison on the M -R relations as well. The
solid lines in Fig. 4 represent the M -R relations calcu-
lated with the reconstructed EoSs in Fig. 3. Naturally,
since the EoSs already look consistent in Fig. 3, the true
and reconstructed M -R relations are close to each other.
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FIG. 4. Randomly sampled 15 data points and the M -R
relation with the reconstructed EoS. The red and blue colors
correspond to two EoSs shown with the same color in Fig. 3.

Mass (M�) Raw RMS (km) Filtered RMS (km)

0.8 0.90 0.15

1.0 0.90 0.21

1.2 0.90 0.23

1.4 0.91 0.25

1.6 1.06 0.25

1.8 1.10 0.27

TABLE II. Root mean square of radius deviations for fixed
masses.

We checked whether the reconstruction works or not
for 188 validation data. Then, we found that the overall
agreement is fairly good, as we saw in Figs. 3 and 4, for
a majority of data, but about 15% of data result in sin-
gular behavior; the reconstructed M -R curve blows up
and does not have any trace of the original one, which is
typical behavior of overlearning. In this case, however,
the singular behavior occurs since some peculiar distri-
bution of M -R data points is not excluded in our random
generator. For the training purpose it would be better to
include them, but for the validation purpose it would not
make sense to check the performance for unphysical data.
In the present analysis there is almost no ambiguity to
exclude unphysical data; when it works, it works good,
and when it does not work, it obviously breaks down.

In Tab. II we give the root mean square (RMS) of
radius deviations using 188 validation data for fixed
masses. We defined the RMS from the deviations be-
tween not the observation data points but the genuine
M -R relation and the one from the reconstructed EoS
(as shown by solid lines in Fig. 4), that is, �R(M) =
R

(rec)(M)�R

(0)(M). Even without any exceptional pro-
cesses, the raw RMS values are around ⇠ 1 km for all
masses as seen in Tab. II, which already indicates that
our method works good especially in view of the fact that
data points have random fluctuations by �R ⇠ 0.5 km.

Fujimoto-Fukushima-Murase (2017)

Dashed lines : randomly generated original data
Solid lines : reconstructed EoS and associated M-R rel.
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FIG. 3. Two examples of the randomly generated EoSs
(dashed lines) and the machine learning outputs (solid lines)
reconstructed from 15 data points.

size 100) and 1 (with the batch size 10) to draw green
lines and blue lines, respectively, in Fig. 2. It is clear that
the learning process is more often stuck at local minima
for fewer observation number. Interestingly, moreover,
the validation loss function for n

s

= 1 shows pathologi-
cal behavior due to overlearning; it increases for epochs
> 1000, while the training loss function continues to de-
crease. Such significant separation of two training and
validation loss functions is a signature for overlearning
and then the predicted output could largely deviate from
the true answer.

Once the loss function converges, we can use the
trained neural networks to infer an EoS from an obser-
vation (i.e. one set of 15 data points). We picked two
examples up to make Fig. 3. Later, we will quantify the
overall performance, but for the moment we shall discuss
these examples. In Fig. 3 the dashed lines represent ran-
domly generated EoSs. We see that two EoSs are iden-
tical in the low density region, which is because in our
boundary condition a conventional nuclear EoS (SLy in
our choice) is employed for ⇢  ⇢

0

. We sampled 15 data
points near the corresponding M -R relations, as shown
in Fig. 4. Each set of 15 data points can be considered
as mock data of the neutron star observation. We em-
phasize that these data points may not necessarily on
the genuine M -R curve, but the trained neural networks
should already know it. From the observation of 15 data
points, the most likely EoS is reconstructed, which is
depicted by solid lines in Fig. 3. We can see that the re-
constructed EoSs agree quite well with the original EoSs
for these two examples. It would be also interesting to
make a comparison on the M -R relations as well. The
solid lines in Fig. 4 represent the M -R relations calcu-
lated with the reconstructed EoSs in Fig. 3. Naturally,
since the EoSs already look consistent in Fig. 3, the true
and reconstructed M -R relations are close to each other.

FIG. 4. Randomly sampled 15 data points and the M -R
relation with the reconstructed EoS. The red and blue colors
correspond to two EoSs shown with the same color in Fig. 3.

Mass (M�) Raw RMS (km) Filtered RMS (km)

0.8 0.90 0.15

1.0 0.90 0.21

1.2 0.90 0.23

1.4 0.91 0.25

1.6 1.06 0.25

1.8 1.10 0.27

TABLE II. Root mean square of radius deviations for fixed
masses.

We checked whether the reconstruction works or not
for 188 validation data. Then, we found that the overall
agreement is fairly good, as we saw in Figs. 3 and 4, for
a majority of data, but about 15% of data result in sin-
gular behavior; the reconstructed M -R curve blows up
and does not have any trace of the original one, which is
typical behavior of overlearning. In this case, however,
the singular behavior occurs since some peculiar distri-
bution of M -R data points is not excluded in our random
generator. For the training purpose it would be better to
include them, but for the validation purpose it would not
make sense to check the performance for unphysical data.
In the present analysis there is almost no ambiguity to
exclude unphysical data; when it works, it works good,
and when it does not work, it obviously breaks down.

In Tab. II we give the root mean square (RMS) of
radius deviations using 188 validation data for fixed
masses. We defined the RMS from the deviations be-
tween not the observation data points but the genuine
M -R relation and the one from the reconstructed EoS
(as shown by solid lines in Fig. 4), that is, �R(M) =
R

(rec)(M)�R

(0)(M). Even without any exceptional pro-
cesses, the raw RMS values are around ⇠ 1 km for all
masses as seen in Tab. II, which already indicates that
our method works good especially in view of the fact that
data points have random fluctuations by �R ⇠ 0.5 km.

Overall performance test

Sometimes, due to random unphysical EoS, the reconstruction  
completely fails ← very easy to exclude from the analysis
Excluding such abnormal data (~15%), the agreement is  
remarkable (remember, input data involve DR=0.5km)
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Summary

Neutron Star Constraint 
□Mass constraint 
□Radius — symmetry energy, tidal deformability 
Theoretical Approach 
□Smooth interpolation (no phase transition) 
□Perturbative QCD calculations need more upgrade 
Experimental Data Analysis 
□Bayesian analysis (hidden assumptions) 
□Machine (deep) learning;  easy and practical  

How to estimate confidential levels?
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