Precision Jet Substructure using Soft Collinear Effective Theory

Yang-Ting Chien

LHC Theory Initiative Fellow, MIT Center for Theoretical Physics

November 9, 2017 Workshop of Recent Developments in QCD and QFTs, NTU

with Ivan Vitev (PRL 119, 112301 (2017)) and Iain Stewart (to appear soon)

Outline

Jets

- hard probes of quark-gluon plasma
- precision jet substructure and grooming
- Soft Collinear Effective Theory (SCET)
- Hard and soft jet substructure
 - splitting function and subjet distribution
 - groomed jet mass with small jet radius
- Conclusion

The creation of the Quark Gluon Plasma (QGP)

A hot and dense medium is created during heavy ion collisions

- The medium quickly thermalizes and allows a hydrodynamic description of its spacetime evolution, eventually turning into soft hadrons
- Energetic jets are also produced abundantly in the medium

Jets and QCD

- Jets are collimated particles observed at high energy colliders
- They are manifestations of underlying partons and defined using jet algorithms with radius R
- Jet physics gets the richest in heavy ion collisions
- Thousands of particles are produced and the underlying event backgrounds are enormous

Jet algorithm

- Jet clustering algorithms merge pairs of closest particles until the angular resolution R
- ► The distance d_{ij} between particles *i* and *j* is defined as $d_{ij} = \min(p_{ii}^{2\beta}, p_{ij}^{2\beta}) \Delta R_{ij}^2 / R^2$

Jets are quenched and modified in heavy ion collisions

- Jets are not only embedded in an enormous underlying event background but also significantly modified
- Because of the huge background, one needs to do both background subtraction and jet grooming and measure jets with small radii (0.2 < R < 0.4)
- Dramatic suppression of jets and momentum imbalance is observed

Hadron and jet cross section suppression

 \triangleright $R_{AA} < 1$ is the ratio of the cross sections in AA and pp collisions

Jet spectroscopy of the QGP

$$\Psi_J(r) = \frac{\sum_{r_i < r} E_{T_i}}{\sum_{r_i < R} E_{T_i}}$$
$$\langle \Psi \rangle = \frac{1}{N_J} \sum_J^{N_J} \Psi_J(r, R)$$
$$\rho(r) = \frac{d\langle \Psi \rangle}{dr}$$

Y.-T. Chien

- Jets have become essential tools to probe the quark-gluon plasma produced in heavy ion collisions
- One typically evaluates the observable modification by the ratio of the curves in AA and pp collisions $\frac{O^{AA}}{CDP}$

Precision jet physics

With detailed understanding of jets and their structures we can relate their modifications to the medium properties: the need of precise jet substructure studies

8/29

Jet substructure calculation and resummation

- Jet shapes probe the averaged energy distribution inside a jet
- The infrared structure of QCD induces Sudakov logarithms
- Fixed order calculation breaks down at small r
- ► Large logarithms of the form $\alpha_s^n \log^m r/R$ $(m \le 2n), n = 1, ..., \infty$ need to be resummed
- Sensitive to the partonic origin of jets and the quark/gluon jet fraction

QCD and effective field theory

Systematically decompose QCD radiations

- Resolve jets at different energy scales
 - A jet is not simply a parton but with sequential branching and splitting
 - Substructure measurements allow us to study the jet formation mechanism at various energy scales
- The dominant contributions to jet observables come from radiations which are
 - Energetic, *collinear*
 - Soft, ubiquitous (not necessarily collinear)
- Power counting by systematically defining collinearity and softness

Resummation and effective field theory

THE BASIC IDEA

- Logarithms of scale ratios appear in perturbative calculations
 - Logarithms become large when scales become hierarchical

$$\log \frac{r}{R} = \log \frac{\text{scale 1}}{\text{scale 2}}$$

- In effective field theories, logarithms are resummed using renormalization group evolution between characteristic scales
 - ► To resum *all* the logarithms we need to identify *all* the relevant scales in EFT

Resummation using Soft-Collinear Effective Theory (SCET)

- Effective field theory techniques are most useful when there is hierarchy between characteristic energy scales
- SCET factorizes physical degrees of freedom in QCD by a systematic expansion in power counting
 - Match SCET with QCD at the hard scale by integrating out the hard modes
 - Integrating out the off-shell modes gives collinear Wilson lines which describe the collinear radiation
 - The soft sector is described by soft Wilson lines along the jet directions

Renormalization group evolution between μ_{j_r} and μ_{j_R} resums $\log \mu_{j_r}/\mu_{j_R} = \log r/R$

(Chien et al 1405.4293)

Power counting in SCET

The scaling of modes in lightcone coordinates $(\bar{n} \cdot p, n \cdot p, p_{\perp})$ where n = (1, 0, 0, 1) and $\bar{n} = (1, 0, 0, -1)$:

 $p_h: E_J(1, 1, 1), p_c: E_J(1, \lambda^2, \lambda) \text{ and } p_s: E_s(1, \mathbb{R}^2, \mathbb{R})$

- E_J is the hard scale which is the energy of the jet
- λ is the power counting parameter (λ < R)
- $E_J\lambda$ is the jet scale which is significantly lower than E_J
- The relevant soft scales depend on observables
- $QCD = \mathcal{O}(\lambda^0) + \mathcal{O}(\lambda^1) + \cdots$ in SCET
 - Leading-power contribution in SCET is a very good approximation

Multiple scattering in a medium and QCD bremsstrahlung

- Coherent multiple scattering and induced bremsstrahlung are the qualitatively new ingredients in the medium parton shower
- Interplay between multiple characteristic scales:
 - Debye screening scale μ
 - Parton mean free path λ
 - Radiation formation time τ

- Jet-medium interaction using SCET with background Glauber gluon fields SCET_G (Glauber-collinear: Majumder et al, Vitev et al. Glauber-soft: work in progress)
- Leading-order medium induced splitting functions $\mathcal{P}_{i \to il}^{med}(x, k_{\perp})$ were calculated using SCET_G (Vitev et al)

First quantitative understanding of jet shape modification

- Cold nuclear matter effect is negligible
- Jet quenching increases the quark jet fraction
- Jet-by-jet the shape is broadened
- Chien et al 1509.07257 and CMS data 1310.0878

Y.-T. Chien

Precision jet physics

How do we isolate physics and distinguish jet quenching models?

- Jets are multi-scaled objects with rich information about the physics across the entire energy spectrum
- Jet observables have different sensitivities to physics at different energy scales
- Through a series of jet measurements we can map out the whole jet formation history
- Whether the model relies on the low scale physics corresponds to two rough pictures of jet quenching
 - Yes. Parton showers are not affected much until the later stages. The medium depletes the partons out of the jet
 - No. The medium effects open up more channels in the jet formation process, all the way from the hard process through hadronization
- Can we test the two pictures and the role of medium response?
 - We are able to dissect radiations and pick out the components of interest
 - The idea: come up with an observable as insensitive to low scale physics as possible
 - The tool: jet grooming

Jet grooming is actually artificial jet quenching

- It is a controlled way to remove soft radiation
- How does a jet quenching model confront with jet grooming?
 - Do they add up or interfere?

Groomed momentum fraction z_g

Soft Drop: a tree-based procedure to drop soft radiation (Larkoski et al 1402.2657)

- Recluster a jet using C/A algorithm: angular ordered
- For each branching, consider the p_T of each branch and the angle θ
- Drop the soft branch if $z < z_{cut} \theta^{\beta}$, where $z = \frac{\min(p_{T,1}, p_{T,2})}{p_{T,1} + p_{T,2}}$
- CMS used $\beta = 0, z_{cut} = 0.1, R = 0.4, \Delta R_{12} > \Delta = 0.1$ and measured z_g

 r_{g} : the momentum fraction of the soft branch. r_{g} : the angle between the branches

z_g and splitting functions

- In vacuum, the soft branch kinematics is closely related to the Altarelli-Parisi splitting function
- > In the medium, the bremsstrahlung component modifies the soft branch kinematics

Analysis of z_g

- The partonic phase space is constrained by *R* (jet algorithm), Δ (jet selection) and *z*_{cut} (jet grooming)
- \blacktriangleright At leading order, the $1 \rightarrow 2$ branching probability directly affects the subjet distribution

$$\mathcal{P}_{i \to jl}(x, k_{\perp}) = \mathcal{P}_{i \to jl}^{vac}(x, k_{\perp}) + \mathcal{P}_{i \to jl}^{med}(x, k_{\perp})$$

► The distributions of z_g and r_g are calculated ($\overline{\mathcal{P}}(x) = \mathcal{P}(x) + \mathcal{P}(1-x)$)

$$p_i(z_g) = \frac{\int_{k_\Delta}^{k_R} dk_\perp \overline{\mathcal{P}}_i(z_g, k_\perp)}{\int_{z_{cut}}^{1/2} dx \int_{k_\Delta}^{k_R} dk_\perp \overline{\mathcal{P}}_i(x, k_\perp)} , \quad p_i(r_g) = \frac{\int_{z_{cut}}^{1/2} dx \, p_T x(1-x) \overline{\mathcal{P}}_i(x, k_\perp(r_g, x))}{\int_{z_{cut}}^{1/2} dx \int_{k_\Delta}^{k_R} dk_\perp \overline{\mathcal{P}}_i(x, k_\perp)}$$

Y.-T. Chien

Precision jet physics

20 / 29

Jet grooming

Theory calculation of z_g

- The medium enhances the small z_g and suppresses the large z_g regions, and the effect becomes smaller for higher p_T jets
- Cutting on the angle between branches selects a special subset of the jet sample
 - Jets with a two prong structure not typical for QCD jets
 - The scale of this subjet branching is high: hard jet substructure

Theory calculation of z_g

Quantitatively agreeing with the CMS data

Y.-T. Chien

Jet grooming

Theory prediction for r_g

- The subjet angular distribution will reveal the nature of QCD bremsstrahlung
- It will be a direct probe of the medium scale
- The next step is the groomed jet mass

Jet grooming

Groomed jet mass

- Invariant mass of soft-dropped jet: $m^2 = (\sum p_i)^2$
- Factorization in SCET

Power counting of modes

- Factorization and resummation:
- In-jet soft mode

$$p_s = E_J z_{cut}(1, R^2, R)$$
, with $\mu_s = E_J R z_{cut}$

Collinear mode

$$p_c = (E_J, \frac{m^2}{E_J}, m), \text{ with } \mu_j = m$$

▶ Soft-collinear mode respecting the measurement $x\theta^2 \sim m^2/E_J^2$ and jet grooming $z_{cut} \sim x(\theta/R)^{-\beta}$

$$p_{sc} = (E_J z_{cut} \left(\frac{m}{E_J R \sqrt{z_{cut}}}\right)^{\frac{2\beta}{2+\beta}}, \frac{m^2}{E_J}, m \sqrt{z_{cut}} \left(\frac{m}{E_J R \sqrt{z_{cut}}}\right)^{\frac{\beta}{2+\beta}}), \text{ with } \mu_{sc} = m \sqrt{z_{cut}} \left(\frac{m}{E_J R \sqrt{z_{cut}}}\right)^{\frac{\beta}{2+\beta}}$$

Hard collinear mode from pure jet reconstruction

$$p_{j_R} = E_J(1, R^2, R)$$
, with $\mu_{j_R} = E_J R$

Groomed jet mass function

► The process-independent groomed jet mass function $J_M^{\sharp}(m^2, \mu)$ captures all the soft-collinear radiation inside jets (i = q, g)

$$J_{M}^{i\neq}(m^{2},\mu) = \int dp^{2} dk J_{i}(p^{2},\mu) S_{i}^{\neq}(k,R,z_{cut},\mu) \delta(m^{2}-p^{2}-2E_{J}k)$$

where $S_i^{\sharp}(k, R, z_{cut}, \mu) = S_i^C(k, R, z_{cut}, \mu)S_i^{IN}(R, z_{cut}, \mu)$

• Medium-induced splitting functions are used to calculate the modification of $J_M^{\sharp}(m^2, \mu)$. At $\mathcal{O}(\alpha_s)$,

$$J_{M}^{j\notin}(m^{2},\mu) = \sum_{j,k} \int_{PS} dx dk_{\perp} \mathcal{P}_{i \to jk}(x,k_{\perp}) \delta(m^{2} - M^{2}(x,k_{\perp})) \Theta_{\text{alg.}} \Theta_{f}$$

$$M^{2}(x,k_{\perp}) = \frac{k_{\perp}^{2}}{x(1-x)}, \Theta_{k_{\mathrm{T}}} = \Theta(E_{J}Rx(1-x)-k_{\perp}), \Theta_{f} = \Theta(E_{J}Rx(1-x)\left(\frac{x}{z_{cut}}\right)^{1/\beta}-k_{\perp}).$$

The full jet mass distribution can be calculated by weighing the groomed jet mass functions with jet cross sections

$$\frac{d\sigma}{dm^2} = \sum_{i=q,g} \int_{PS} dp_T dy \frac{d\sigma^i}{dp_T dy} P_i^{\sharp}(m^2,\mu), \text{ where } P_i^{\sharp}(m^2,\mu) = \frac{J_M^{i\sharp}(m^2,\mu)}{J_{un}^i(\mu)}$$

Resummed groomed jet mass function

- Each function is calculated at 1-loop and depends on a single scale
- $P_i^{\sharp}(m^2,\mu)$ is manifestly renormalization group invariant. Logs are resummed using the RG evolution of each function.

$$P_{i}^{f}(m^{2},\mu) = \exp\left[2\frac{2+\beta}{1+\beta}C_{i}S(\mu_{sc},\mu_{s}) - 4C_{i}S(\mu_{j},\mu_{s}) + 2C_{i}S(\mu_{j_{R}},\mu_{s}) + 2A_{J_{i}}(\mu_{j},\mu_{j_{R}}) + 2A_{S_{i}}(\mu_{sc},\mu_{j_{R}})\right] \\ \times \left(\frac{\mu_{j}^{2}z_{cut}^{1+\beta}}{\mu_{sc}^{2+\beta}(2E_{J}\tan\frac{R}{2})^{\frac{\beta}{1+\beta}}}\right)^{2C_{i}A_{\Gamma}(\mu_{s},\mu_{sc})} \left(\frac{2E_{J}\tan\frac{R}{2}}{\mu_{j_{R}}}\right)^{2C_{i}A_{\Gamma}(\mu_{s},\mu_{j_{R}})} \frac{S_{i}^{IN}(\mu_{s})}{m^{2}J_{un}^{i}(\mu_{j_{R}})} \\ \tilde{J}_{i}(\partial\eta,\mu_{j})\tilde{S}_{i}^{C}(\partial\eta+\ln\frac{\mu_{j}^{2}z_{cut}^{1+\beta}}{\mu_{sc}^{2+\beta}(2E_{J}\tan\frac{R}{2})^{\frac{\beta}{1+\beta}}},\mu_{sc})\left(\frac{m^{2}}{\mu_{j}^{2}}\right)^{\eta}\frac{e^{-\gamma_{E}\eta}}{\Gamma(\eta)}$$

Jet grooming

Preliminary results

- The $\Delta R_{12} > 0.1$ cut cuts out the Sudakov peak and eliminates the quark/gluon difference
- The lower and upper limits of jet mass are essentially dictated by kinematics. rg and jet mass are highly correlated
- The medium lowest-order perturbative contribution enhances the small mass region
- Hard splitting can "shield" inner soft radiations from being soft-dropped
- Soft contributions (anything softer: modification of subjets, pp smearing, etc) and hadronization effects are still under examination

Y.-T. Chien

Precision jet physics

Conclusion

- What we have learned: flavor dependence of jet quenching and the role of quark/gluon jet fraction in jet substructures
- Subjet distribution provides an opportunity to test the modification of hard splitting within jets
- Groomed jet mass is resummed with small radius, and the medium lowest-order perturbative contribution enhances the small mass region (preliminary)
- Effective field theory techniques allow systematically improvable jet quenching studies