Stress and energy distribution in quark-anti-quark systems using gradient flow

Ryosuke Yanagihara (Osaka University)

for FlowQCD Collaboration : Masayuki Asakawa, Takumi Iritani, Masakiyo Kitazawa, Tetsuo Hatsuda

✓ Coulomb potential

- ✓ flux tube, squeezed one-dimentionally !
- \checkmark confinement potential

goal

Physics around flux tube in terms of energy and stress

To Do

(1) prepare $q\bar{q}$ on the lattice and (2) measure EMT around $q\bar{q}$

Measurement of the Stress on the Lattice

Measurement of the Stress on the Lattice

Measurement of the Stress on the Lattice

Setup

- ✓ Quenched SU(3)
- ✓ Wilson gauge action
- ✓ Clover operator
- \checkmark APE smearing for spatial links
- ✓ Multihit improvement in temporal link
- ✓ Simulation using BlueGene/Q @ KEK

β	lattice spacing	ratio	lattice size	# of statistics
6.304	0.057 fm	4	48 ⁴	140
6.465	0.046 fm	5	48 ⁴	440
6.600	0.038 fm	6	48 ⁴	1500
6.819	0.029 fm	8	64 ⁴	1000

Stress Distribution in Maxwell Theory

EMT in Maxwell Theory (revisit)

$$T_{ij} = \epsilon_0 \left(E_i E_j - \frac{\delta_{ij}}{2} E^2 \right) + \frac{1}{\mu_0} \left(B_i B_j - \frac{\delta_{ij}}{2} B^2 \right)$$

Profile of $\langle T_{ii} \rangle_W (i = 0, z, r, \theta)$ (mid plane)

Potential vs EMT (mid plane)

Summary and Outlook

summary First measurements of stress distribution on the lattice !! 0.2 16 $-\langle T_{00} \rangle_W$ 14 $-\langle T_{zz} \rangle_W$ 0.1 $\langle T_{ii}
angle_W [{
m GeV}/{
m fm}^3]_{-1}$ Separation $\langle T_{rr} \rangle_W$ $\langle T_{\theta\theta} \rangle_W$ $x[\mathrm{fm}]$ 0.0 -0.1Preliminary Pre -0.20.0 0.2 0.3 0.4 0.5 0.1 0.6 0.7 -0.2 0.1 -0.3 -0.10.0 0.2 0.3 $r \, [\mathrm{fm}]$ z[fm]

outlook

We need to explain the stress distribution

using abelian dual monopole model model, NG string...

✓ Application : two flux tube, finite temperature, excited states...

Enhancement of ground state

a
ightarrow 0 limit

Fat flux tube

Cardoso et al. (2013)

Stress asymmetry

