

Electromagnetic Propagation in Anisotropic Media

 $\mathbf{D}_{i} = \mathbf{e}_{ij}\mathbf{E}_{j}$

$$\tilde{\mathbf{N}} \cdot \mathbf{E} + \frac{\P \mathbf{B}}{\P \mathbf{t}} = 0$$
$$\tilde{\mathbf{N}} \cdot \mathbf{H} - \frac{\P \mathbf{D}}{\P \mathbf{t}} = \mathbf{J}$$
$$\tilde{\mathbf{N}} \cdot \mathbf{D} = \mathbf{r}$$
$$\tilde{\mathbf{N}} \cdot \mathbf{B} = 0$$

Constituitve Equations

 $\mathbf{D} = \mathbf{e}\mathbf{E} = \mathbf{e}_{0}\mathbf{E} + \mathbf{P}$ $\mathbf{B} = \mathbf{m}\mathbf{H} = \mathbf{m}_{0}\mathbf{H} + \mathbf{M}$

E=Electric field vector H=Magnetic field vector D=Electric displacement B=Magnetic induction ρ =Electric charge density J= Current density P=electric polarization M=Magnetic polarization ϵ =permitivity tensor ϵ_{o} =permitivity of vacuum μ =permeability tensor μ_{o} =permeability of vacuum

6.976 Flat Panel Display Devices - Spring 2001

 $\mathbf{e} = \mathbf{e}_{\mathbf{o}} \mathbf{\hat{g}} \mathbf{0} \quad \mathbf{n}_{\mathbf{y}}^{2} \quad \mathbf{0} \quad \mathbf{\hat{o}} = \mathbf{\hat{g}} \mathbf{e}_{\mathbf{x}} \quad \mathbf{0} \quad \mathbf{0} = \mathbf{\hat{o}} = \mathbf{\hat{g}} \mathbf{0} \quad \mathbf{n}_{\mathbf{y}}^{2} \quad \mathbf{0} = \mathbf{\hat{g}} \mathbf{0} \quad \mathbf{e}_{\mathbf{y}} \quad \mathbf{0} = \mathbf{\hat{g}} = \mathbf{\hat{g}} \mathbf{0} \quad \mathbf{e}_{\mathbf{y}} \quad \mathbf{\hat{g}} = \mathbf{\hat{$

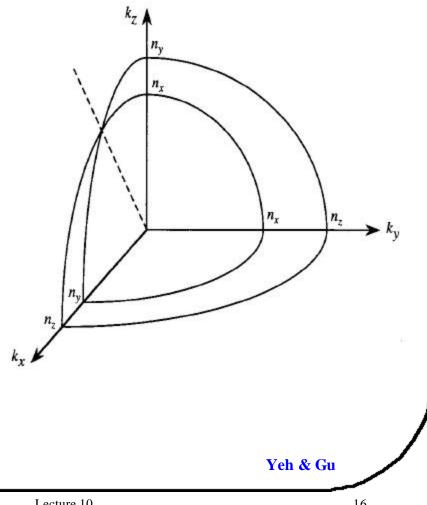
Plane Wave in Homogeneous Media

$$\overline{\mathbf{E}} \exp \left[\mathbf{i} \left(\mathbf{w} \mathbf{t} - \overline{\mathbf{k}} \cdot \overline{\mathbf{r}} \right) \right]$$

 $\frac{\text{Magnetic Field Vector}}{\overline{H} \exp[i(\text{wt} - \overline{k} \cdot \overline{r})]}$

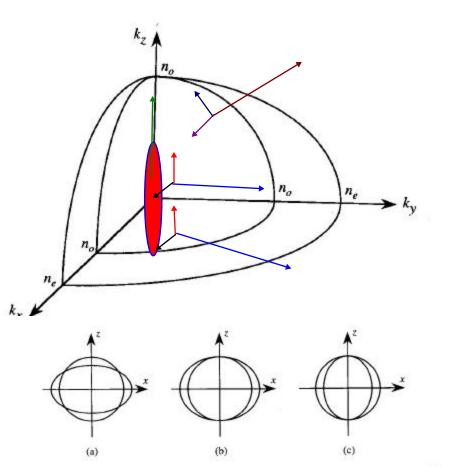
 $\overline{\mathbf{k}} = \frac{\mathbf{w}}{\mathbf{c}} \mathbf{n}\overline{\mathbf{s}}$ $\overline{\mathbf{s}}$ = unit vector in propagation direction

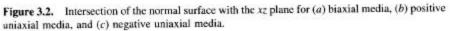
Plugging these in Maxwell's equation reduces to


 $\overline{\mathbf{k}} \cdot \left(\overline{\mathbf{k}} \cdot \overline{\mathbf{E}}\right) + \mathbf{w}^2 \mathbf{m} \overline{\mathbf{E}} = 0$

This leads to a relation between $\boldsymbol{\omega}$ and \boldsymbol{k}

$$det \begin{vmatrix} w^{2}me_{x} - k_{y}^{2} - k_{z}^{2} & k_{x}k_{y} & k_{x}k_{z} \\ k_{y}k_{x} & w^{2}me_{y} - k_{x}^{2} - k_{z}^{2} & k_{y}k_{z} \\ k_{z}k_{x} & k_{z}k_{y} & w^{2}me_{z} - k_{x}^{2} - k_{y}^{2} \end{vmatrix} = 0$$


Normal Surface


- Solution for $n_x(\varepsilon_x)$ at a given • frequency represents a 3D surface in **k** space known as normal surface
 - consists of two shells having four points in common
 - optic axis = two lines that go through the origin and these four points
- Given a direction of propagation, • there are two k values that are intersections of propagation direction and normal surface
 - **k** values \Rightarrow different phase velocities (ω/k) of waves propagating along the direction
- Along an arbitrary direction of propagation, s, there can exist two independent plane waves linearly polarized propagating with phase velocities ($\pm c/n_1$ and ($\pm c/n_2$)

Classification of Media

- Normal surface is determined by the principal indices of refraction, n_x, n_y, n_z
- $n_x \neq n_y \neq n_z \Rightarrow$ biaxial material
 - Two optical axes
- $n_o^2 = \varepsilon_x / \varepsilon_o = \varepsilon_y / \varepsilon_o$ and $n_e^2 = \varepsilon_z / \varepsilon_o$
 - \Rightarrow uniaxial material (z-axis)
 - Normal surface consists of a sphere and ellipsoid of revolution
 - n_o is ordinary index and n_e extraordinary index
 - $n_e n_o$ either +ve or -ve
- $n_x = n_y = n_z \Rightarrow$ isotropic material
 - Normal surface degenerate in a single sphere

Other Method

17

Yeh & Gu

Table 3.2a.	Refractive	Indices	of Some	Typical	Solid	Crystals
-------------	------------	---------	---------	---------	-------	----------

Isotropic	Fluorite, CaF ₂ 1.39		1.392		Table 3.2b. Refr	ractive Indic	es of Some Typical Ner	nane Liquio er	ystais [1]
isouopie	Sodium chloride, NaCl		1.544			$T(^{\circ}C)$	Wavelength (nm)	ne	n_{σ}
	Diamond, C		2.417		MBBA	25	467.8	1.837	1.575
	CdTe		2.69		(Schiff base)		480	1.825	1.57
	GaAs		3.40		(Schin base)		508.6	1.802	1.563
	Ge		3.40				589	1.764	1.549
	InP		3.61				643.8	1.749	1.544
	GaP		3.73					1.718	1.515
Uniaxial		no		ne	RO-TN-601	25	467.8 480	1.7116	1.5131
Junior				ne			480 508.6	1.7041	1.5098
Positive	Ice, H ₂ O	1.309		1.310			546.1	1.6937	1.506
	MgF ₂	1.378		1.390				1.07.57	
	Quartz, SiO ₂ 1.544 1.553			Phase 4 Licristal (EM-Merck), azoxy					
	Beryllium oxide, BeO	1.717		1.732		25	546.1	1.856	1.560
	Zircon, ZrSiO ₄	1.923		1.968			589.3	1.8291	1.553
	SnO ₂ 2.01 2.10			K15 (5CB) (BDH, Ltd.), Cyanoalkylbiphenyl					
	ZnS	2.354		2.358	KIS (SCB) (BDH	25	436		
	CdS	2.483		2.511			509	1.7411	1.544
	Rutile, TiO ₂	2.616		2.903			577	1.7201	1.535
							644	1.7072	1.529
Negative	KDP, KH_2PO_4	1.507		1.467		20	436	1.7648	1.562
	ADP, (NH ₄)H ₂ PO ₄	1.522		1.478		30	509	1.725	1.548
	Beryl, Be ₃ Al ₂ (SiO ₃) ₆	1.598		1.590			577	1.7044	1.539
	Sodium nitrate, NaNO ₃	1.587		1.366			644	1.6926	1.532
	Calcite, CaCO ₃	1.658		1.486			044	1.0720	
	Tourmaline	1.638		1.618	K21 (7CB) (BDH	I, Ltd.), cyan		1222	
	Sapphire, Al ₂ O ₃	1.768		1.760		37	436	1.736	1.544
	Lithium niobate, LiNbO3	2.300		2.208			509	1.6998	1.532
	Barium titanate, BaTiO ₃	2.416		2.364			577	1.6815	1.524
	Proustite, Ag ₃ AsS ₃	3.019		2.739			644	1.6702	1.518
Biaxial		n_x	n_y	nz		41	436	1.714	1.551
			y	742			509	1.6805	1.538
	Gypsum, CaSO ₄ · 2H ₂ O	1.520	1.523	1.530			577	1.6632	1.530
	Feldspar	1.522	1.526	1.530			644	1.6526	1.523
	Mica	1.552	1.582	1.588	LUCICOCD, DD				
	Topaz, Al ₂ (SiO ₄)(OH,F) ₂	1.619	1.620	1.627	M15(5OCB) (BD		noalkoxybiphenyl 589	1.7187	1.525
	Sodium nitrite, NaNO ₂	1.344	1.411	1.651		50		1.7107	
			1.947	M21(7OCB) (BDH, Ltd.), cyanoalkoxybiphenyl			10/04/2010/04/04	0.000	
	SbSI	2.7	3.2	3.8		60	589	1.6846	1.513
	0001	2.1		2.0			anoalkoxybiphenyl		

Yeh & Gu

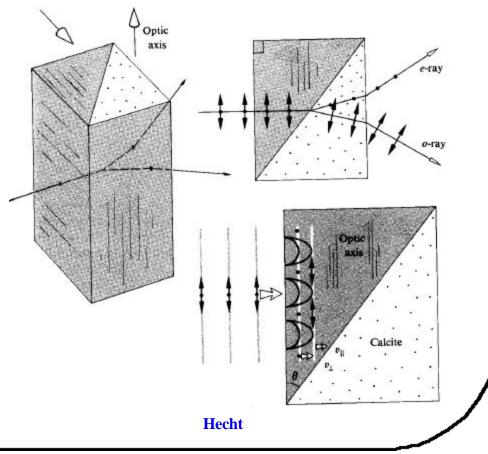
Light Propagation in Uniaxial Media $\mathbf{e}_{\mathbf{x}} = \mathbf{e}_{\mathbf{y}} = \mathbf{e}_{\mathbf{o}}\mathbf{n}_{\mathbf{o}}^2$; $\mathbf{e}_{\mathbf{z}} = \mathbf{e}_{\mathbf{o}}\mathbf{n}_{\mathbf{e}}^2$

Normal surface

$$\frac{\mathbf{a}\mathbf{k}\mathbf{k}^{2}_{\mathbf{x}} + \mathbf{k}^{2}_{\mathbf{y}}}{\mathbf{n}^{2}_{\mathbf{e}}} + \frac{\mathbf{k}^{2}_{\mathbf{z}}}{\mathbf{n}^{2}_{\mathbf{o}}} - \frac{\mathbf{w}^{2}}{\mathbf{c}^{2}}\frac{\mathbf{\ddot{\mathbf{a}}\mathbf{e}\mathbf{k}}^{2}}{\mathbf{\dot{\mathbf{b}}\mathbf{e}}} - \frac{\mathbf{w}^{2}}{\mathbf{c}^{2}}\frac{\mathbf{\ddot{\mathbf{o}}}}{\mathbf{\dot{\mathbf{b}}}\mathbf{e}} - \frac{\mathbf{w}^{2}}{\mathbf{c}^{2}}\frac{\mathbf{\ddot{\mathbf{b}}}}{\mathbf{\dot{\mathbf{b}}}\mathbf{e}} = 0$$

- Sphere gives the relationship between (a) and k for the ordinary (()) wave
- Ellipsoid of revolution gives the relationship between ω and k for the extraordinary (E) wave
- The two surfaces touch at two points on z-axis

Eigen-refractive indices are


O-wave
$$n = n_o$$

E - wave
$$\frac{1}{n^2} = \frac{\cos^2 \mathbf{q}}{\mathbf{n}_o^2} + \frac{\sin^2 \mathbf{q}}{\mathbf{n}_e^2}$$

 θ is the angle between propagation direction and optic axis

Phase Retardation $\mathbf{D} = \mathbf{C}_{o} \mathbf{D}_{o} \exp\left[-i\overline{\mathbf{k}}_{o} \cdot \overline{\mathbf{r}}\right] + \mathbf{C}_{e} \mathbf{D}_{e} \exp\left[-i\overline{\mathbf{k}}_{e} \cdot \overline{\mathbf{r}}\right]$

- Inside a uniaxial medium, a phase retardation develops between O-wave and E-wave
 - Due to diff. in phase velocity
- Phase retardation leads to a new polarization state
 - **Þ** Birefringent plates can be used to alter polarization state of light

Phase Retardation

Wave propagating in uniaxial medium perpendicular to z(c-) axis

$$\mathbf{E} = \mathbf{C}_{o} \mathbf{\overline{x}} \exp\left[-\mathbf{i} \mathbf{\overline{k}}_{o} \cdot \mathbf{\overline{r}}\right] + \mathbf{C}_{e} \mathbf{\overline{z}} \exp\left[-\mathbf{i} \mathbf{\overline{k}}_{e} \cdot \mathbf{\overline{r}}\right]$$

Assuming
$$C_o = C_e = 1$$

At y = 0

E = **x** + **z Linearly polarized**

At y = d_{1/4} =
$$\frac{\mathbf{p}/2}{\mathbf{w}/\mathbf{c}(\mathbf{n}_e - \mathbf{n}_o)}$$

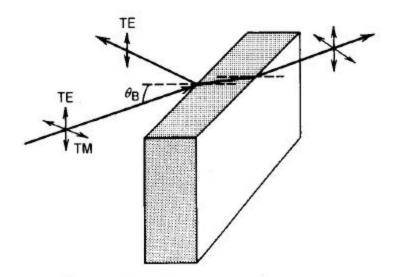
E = exp(ik_ed_{1/4})[ix + z] Circularly polarized

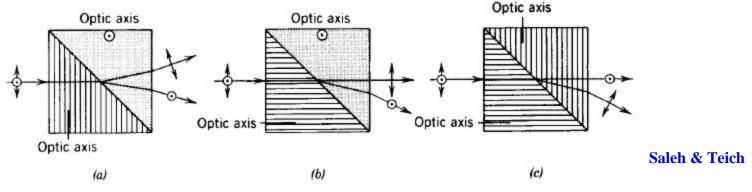
At
$$y = d_{1/2} = 2d_{1/4}$$

 $E = exp(ik_e d_{1/2})[-x + z]$ Linearly polarized
but ± to original

- Birefringent plate with thickness $d_{\lambda/4}$ is known as **quarter-wave plate** and it is used to convert a linear polarization to circular polarization
- Birefringent plate with d_{λ/4} is known as half-wave plate and it is used to change direction of linear polarization

Polarization by Selective Reflection



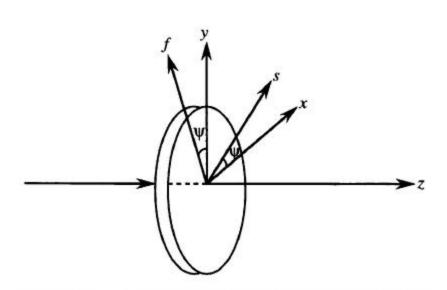

Figure 6.6-2 Brewster-angle polarizer.

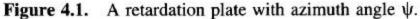
Saleh & Teich

- Reflection of light from the boundary between two dielectric materials is polarization dependent
- At the Brewsters angle of incidence
 - Light of TM polarization is totally refracted
 - Only TE component is reflected

$$\mathbf{n}_{i} \sin \mathbf{q}_{B} = \mathbf{n}_{t} \sin \mathbf{q}_{t} \qquad \mathbf{q}_{t} = 90^{\circ} - \mathbf{q}_{B}$$
$$\mathbf{n}_{i} \sin \mathbf{q}_{B} = \mathbf{n}_{t} \cos \mathbf{q}_{B} \qquad \mathbf{P} \ \tan \mathbf{q}_{B} = \mathbf{n}_{i} / \mathbf{n}_{t}$$

Polarization by Selective Refraction

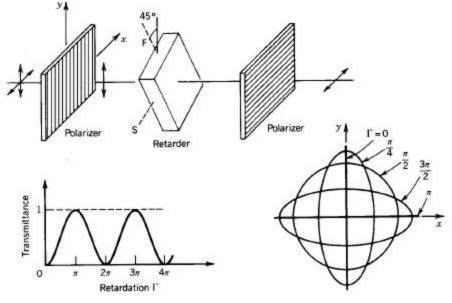



Figure 6.6-3 Polarizing prisms: (a) Wollaston prism; (b) Rochon prism; (c) Sénarmont prism. The directions and polarizations of the exiting waves differ in the three cases. In this illustration, the crystals are negative uniaxial (e.g., calcite).

- In an anisotropic crystal, two polarizations of light refract at different angles
 - Spatially separation
- Devices are usually two cemented prisms of uniaxial crystals in different orientations

Wave Retarders (Wave Plates)

- Retarders change the polarization of an incident wave
- One of the two constituent polarization state is caused to lag behind the other
 - Fast wave advanced
 - Slow wave retarded
- Relative phase of the two components are different at exit
- Converts polarization state into another
 - Linear to circular/elliptical
 - Circular/elliptical to linear



 $\mathbf{G} = \frac{2\mathbf{p}}{\mathbf{I}} (\mathbf{n}_{s} - \mathbf{n}_{f}) \mathbf{d}$

Wave Retarders (Wave Plates)

- Wave retarders are often made of anisotropic materials
 - uniaxial
- When light wave travels along a principal axis, the normal modes are linearly polarized pointing along the other two principal axes (x, y)
 - Travel with principal refractive indices n_f, n_s
- **Intensity** modulated by relative **phase retardation**

Polarization ellipses

Figure 6.6-4 Controlling light intensity by use of a wave retarder with variable retardation Γ between two crossed polarizers.

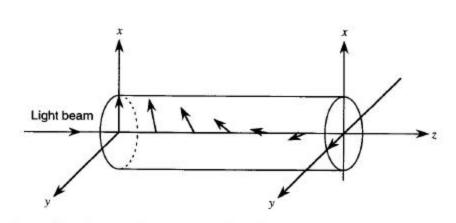
Saleh & Teich

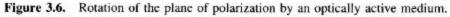
$$\mathbf{G} = \frac{2\mathbf{p}}{\mathbf{l}} (\mathbf{n}_{s} - \mathbf{n}_{f}) \mathbf{d} = \mathbf{k}_{o} (\mathbf{n}_{s} - \mathbf{n}_{f}) \mathbf{d}$$

Anisotropic Absorbtion and Polarizers

To take care of absorbtion, generalize the refractive index to complex number

 $\hat{\mathbf{n}}_{o} = \mathbf{n}_{o} - \mathbf{i}\mathbf{k}_{o}$ $\hat{\mathbf{n}}_{e} = \mathbf{n}_{e} - \mathbf{i}\mathbf{k}_{e}$ $\mathbf{k}_{o}, \mathbf{k}_{e} \text{ are extinction coefficient}$


O-type polarizer transmits ordinary waves and attenuates extraordinary wave i.e. $\kappa_0 = 0$ **E-type** polarizer transmits extraordinary waves and attenuates ordinary wave i.e. $\kappa_e = 0$


Define

 $T_{1} = \text{transmission with polarization // to the transmission axis}$ $T_{2} = \text{transmission with polarization } \pm \text{ to the transmission axis}$ Extinction Ratio = $\frac{T_{2}}{T_{1}}$ $T_{o} = \frac{T_{1} + T_{2}}{2}$ Transmittance of unpolarized light through polarizer $T_{p} = \frac{T_{1}^{2} + T_{2}^{2}}{2}$ Transmittance of unpolarized light through pair of // polarizers $T_{x} = \frac{T_{1}T_{2}}{2}$ Transmittance of unpolarized light through pair of \pm polarizers

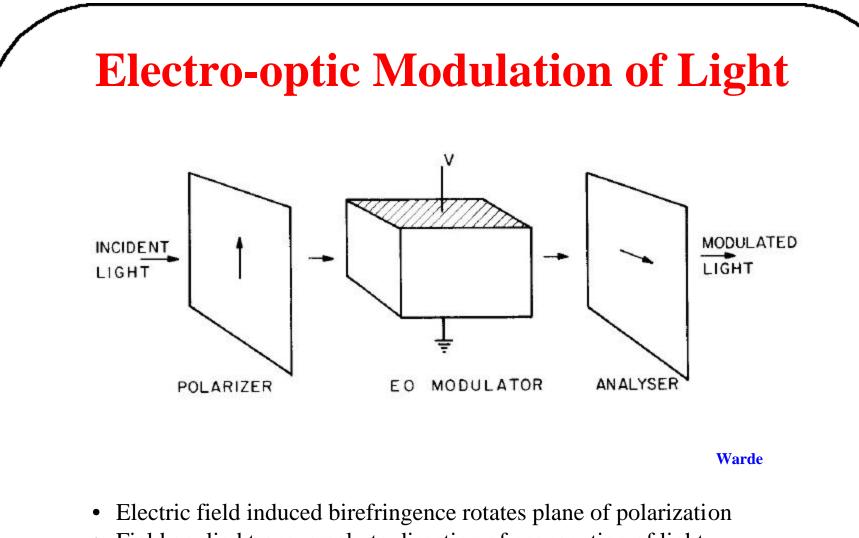
6.976 Flat Panel Display Devices - Spring 2001

Optical Activity

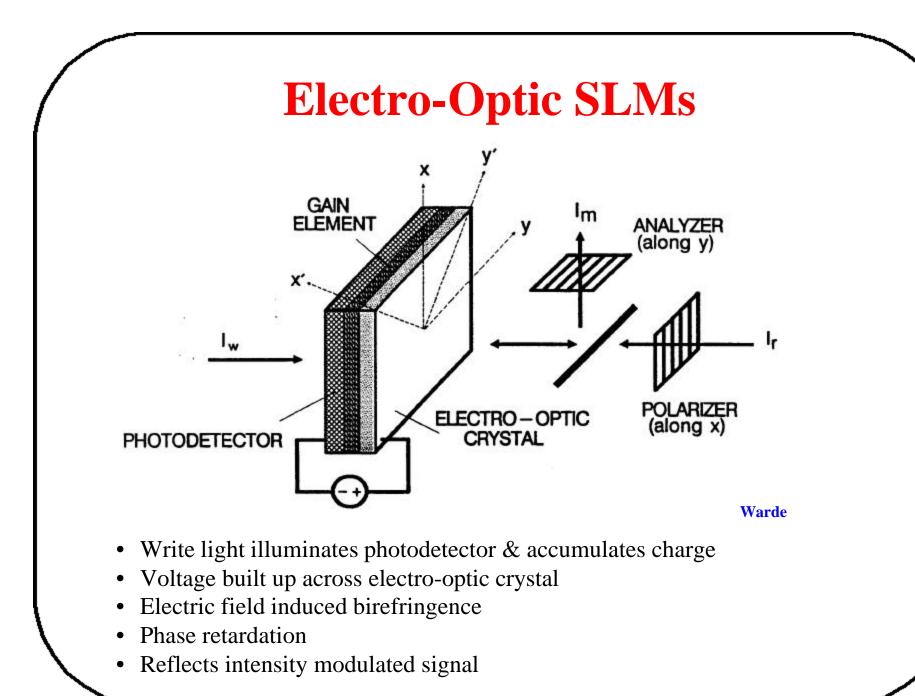
Yeh & Gu

- Optically active materials are substances that rotate a beam of light traversing through them in the direction of the optical axis.
 - Usually given in %/mm

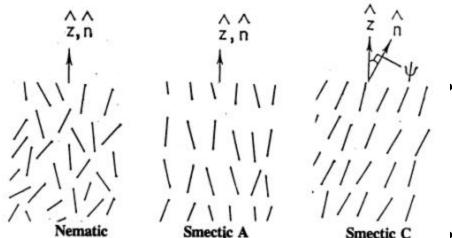
Could be induced by external signal such as


- Electric field (electro-optic effect)
- Optical signal (photo-refractive effect)

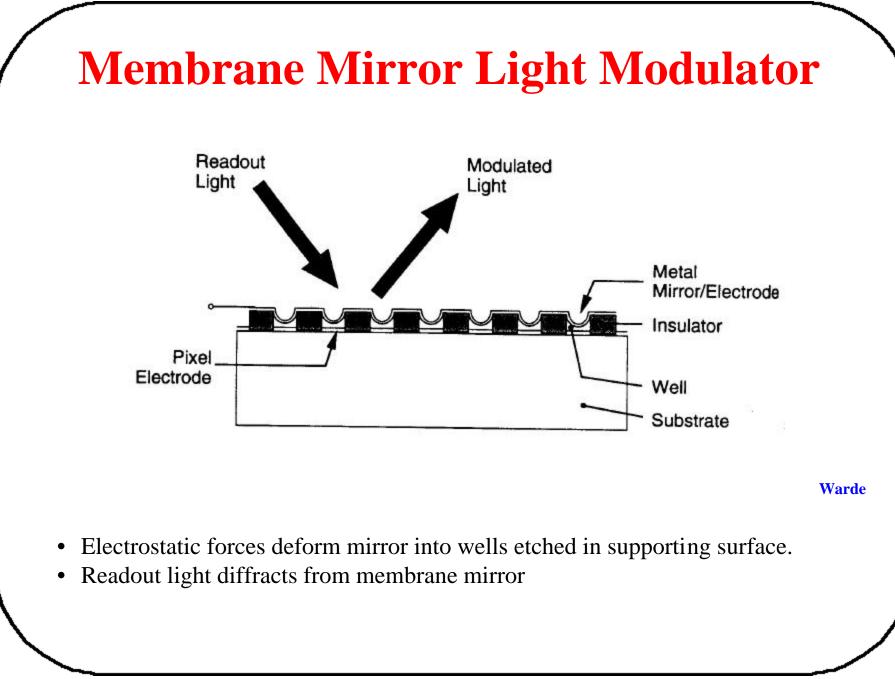
Spatial Light Modulators


- Spatial light modulators (or light valves) are the buiding blocks of optical information processors and display systems.
- Consider a plane monochromatic wave of the form: $\overline{\mathbf{E}}(\mathbf{r},\mathbf{t}) = \hat{\mathbf{e}} \operatorname{Re} \{ \mathbf{E}_{o} \exp[\mathbf{j}(\mathbf{wt} - \mathbf{k} \cdot \mathbf{r} + \mathbf{f})] \}$
- A spatial light modulator (SLM) is a device that can modify the phase, polarization and/or amplitude of a 2D light beam as a function of either:
 - A time varying electrical drive signal (electrically addressed SLM)
 - The intensity distribution of another time-varying optical signal (optically addressed SLM)

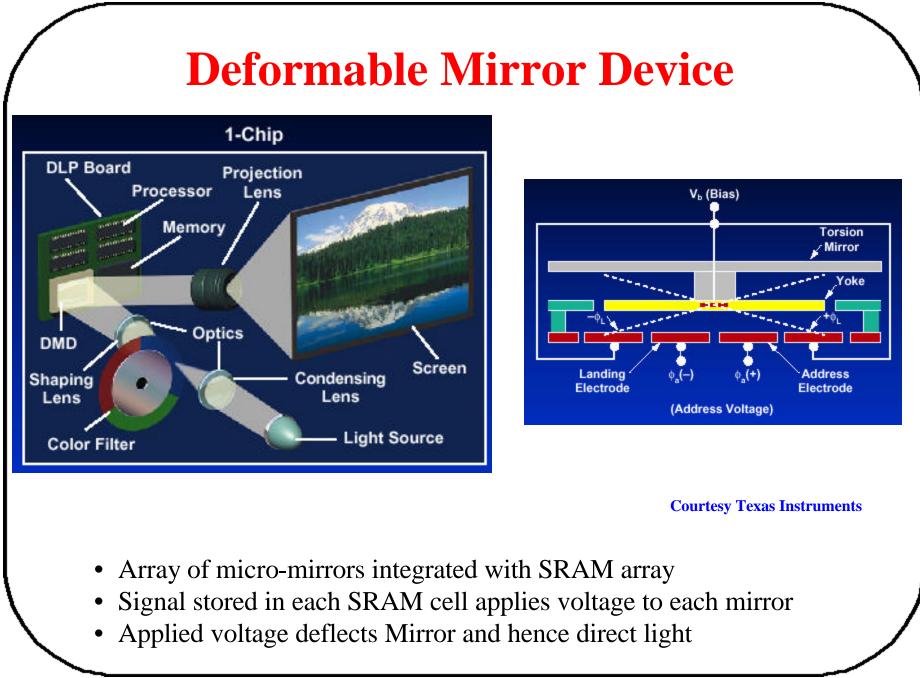
Examples of Light Modulation Schemes


- Electro-optic effect
 - Pockels effect $\Delta n \propto E$ (LiNbO₃)
 - Kerr effect $\Delta n \propto E^2$ (PLZT)
- Photorefractive effect
 - $\Delta n \propto \text{Exposure (LiNbO}_3, \text{BaTiO}_3)$
- Molecular alignment by electric field
 - Torque=PXE (Liquid Crystals)
- Micromechanical
 - Electrostatic deformation (membranes, gels, oil films)
- Thermal
 - Thermoplastics, smectic A & nematic liquid crystals
- Electrophoresis
 - motion of charged particles in an electric field

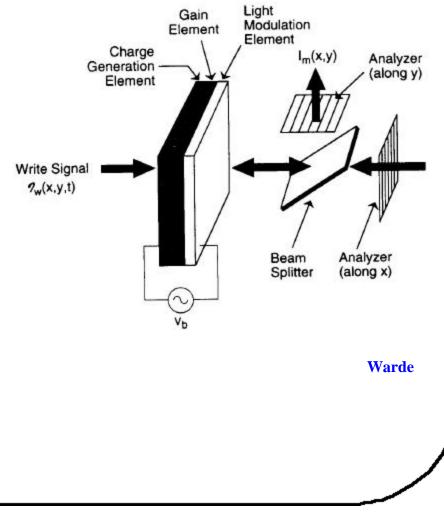
- Field applied transversely to direction of propagation of light
- Analyzer transmits an amplitude proportional to cosine of polarization angle wrt analyzer



Liquid Crystal Devices



- Nematic liquid crystal
 - The re-orientation of molecules with the electric field alters the birefringence of the material.
 - Electroclinic Smetic liquid crystal
 - The tilt angle of molecules is linear with applie delectric field
- Surface stabilized Smetic Ferroelectric liquid crystal
 - Molecules switch between two surface stabilized states because of the torque resulting from coupling of ferro-electric polarization to the applied E



6.976 Flat Panel Display Devices - Spring 2001

Summary of Today's Lecture

- Light valves modulate light coming from an independent light source of high intensity
- Modulation derived from phenomena causing
 - Reflection
 - Diffraction
 - Scattering
 - Polarization change
- Modulation of
 - Amplitude
 - Phase
 - Polarization
 - Intensity

