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Introduction

I’d like to talk about how mathematics and physics can come
together to the benefit of both fields, particularly in the case of
Calabi-Yau spaces and string theory. This happens to be the
subject of the new book I coauthored,

THE SHAPE OF INNER SPACE

It also tells some of my own story and a bit of the history of
geometry as well.
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In that spirit, I’m going to back up and talk about my personal
introduction to geometry and how I ended up spending much of
my career working at the interface between math and physics.
Along the way, I hope to give people a sense of how
mathematicians think and approach the world. I also want people
to realize that mathematics does not have to be a wholly abstract
discipline, disconnected from everyday phenomena, but is instead
crucial to our understanding of the physical world.
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There are several major contributions of mathematicians to
fundamental physics in 20th century:

1. Poincaré and Minkowski contribution to special relativity.
(The book of Pais on the biography of Einstein explained this
clearly.)

2. Contributions of Grossmann and Hilbert to general relativity:
Marcel Grossmann (1878-1936) was a classmate with Einstein
from 1898 to 1900. he was professor of geometry at ETH,
Switzerland at 1907. In 1912, Einstein came to ETH to be
professor where they started to work together. Grossmann
suggested tensor calculus, as was proposed by Elwin Bruno
Christoffel in 1868 (Crelle journal) and developed by Gregorio
Ricci-Curbastro and Tullio Levi-Civita (1901).
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Einstein wrote to Arnold Sommerfeld in Oct. 29, 1912:

I am now working exclusively on the gravitation problem
and believe that I can overcome all difficulties with a
mathematician friend of mine here. But one thing is
certain: never before in my life have I toiled anywhere
near as much, and I have gained enormous respect for
mathematics, where much subtle parts I considered until
now, in my ignorance, as per luxury. compared with this
problem, the original theory of relativity is child’s play.
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They published two joint papers: one in
1913, and one in 1914, they wrote down
equations rather close to Einstein’s equa-
tion, except missing a term.

In 1915 winter, Einstein had communica-
tion with Hilbert, who wrote down the ac-
tion for general relativity.

Hilbert
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3. Gauge theory: Levi Civita (1973-1941) communicated
extensively with Einstein from 1915 to 1917. He pointed out
that connection should be singled out as an independent
variable for possible unification of gravity with other fields. It
should be noted that Kaluza in 1919, also pointed out that if
one solves the five dimensional Einstein equation suitably,
Maxiwell equations emerge. Weyl developed abelian gauge
theory for unifying gravity with maxwell equation while Cartan
developed more general gauge groups for differental geometry

4. Paul Dirac was led to his equation through the excitement of
the work of Hamilton on quaternions.
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I. Riemannian Geometry

When I arrived in Berkeley in 1969 for graduate study, I learned
that the concept of geometry had gone through a radical change in
the 19th century, thanks to the contributions of Gauss and
Riemann. Riemann revolutionized our notions of space, freeing up
mathematics in the process.

Gauss Riemann
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Objects no longer had to be confined to the flat, linear space of
Euclidean geometry. Riemann instead proposed a much more
abstract conception of space — of any possible dimension— in
which we could describe distance and curvature. In fact, one can
develop a form of calculus that is especially suited to such an
abstract space.
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About 50 years later, Einstein realized that this kind of geometry,
which involved curved spaces, was exactly what he needed to unify
Newtonian gravity with special relativity. This insight culminated
in his famous theory of general relativity.

Einstein Curved Space-time
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I learned about Riemannian geome-
try during my first year at Berkeley in
1969. It was different from the classi-
cal geometry that I studied in college
in Hong Kong, where we focused on
curves and surfaces in linear space.
At Berkeley, I took courses on alge-
braic topology, Riemannian geome-
try, and partial differential equations.
I also audited courses on many other
subjects, including general relativity,
taking in as much information as I
could possibly assimilate.

At Berkeley 1969
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I spent all my free time in the mathemat-
ics library, which served as my unofficial
office, where I constantly searched for in-
teresting articles to pass the time. During
the Christmas holiday of that year, when
everybody else went home, I read John
Milnor’s paper in the Journal of Differen-
tial Geometry on the relation of the funda-
mental group to the curvature of a man-
ifold. Milnor referred to another paper
by Preissman that sounded interesting to
me.

John Milnor
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From these papers, I learned that if the space has negative
curvature, there is a strong constraint on the “fundamental
group”—a concept from topology. Such a group consists of closed
loops in that space, each of which has an initial point fixed. The
elements of this group, which can be deformed to each other, are
considered equivalent. Preissman’s theorem says that in the
fundamental group of manifolds with negative curvature, every two
commuting elements can be written as a multiple of some other
element in the group.
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This was intriguing, and I started to toy around with Preissman’s
paper, trying to see what would happen if the space is allowed to
have non-positive curvature. This was the first time I got into
statements linking the curvature of a space — a precise description
of the geometry— to a much cruder, more general way of
characterizing shape, which we call topology.
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I wrote down my generalization of Preissman’s theorem, which
links topology to geometry. While I was photocopying those notes
in the Xerox room, I ran into Arthur Fisher, a mathematical
physicist. He insisted on knowing what I had written. After
reading through my notes, he told me that any principle that
related curvature with topology would be useful in physics. His
comments have stayed with me ever since.
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II. General Relativity

We learned through special relativity that space and time should
not be treated separately but should instead be merged together to
form spacetime. Einstein struggled in his attempt to obtain a
fundamental description of gravity. But he got some help from his
friend Marcel Grossman, a mathematician, who told him of the
work of other mathematicians, Riemann and Ricci.

Riemann provided the framework of abstract space, as well as the
means for defining distance and curvature in such a space.
Riemann thus supplied the background space or setting in which
gravity, as Einstein formulated it, plays out.
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But Einstein also drew on the work of Ricci, who defined a special
kind of curvature that could be used to describe the distribution of
matter in spacetime. In fact, the Ricci curvature can be viewed as
the trace of the curvature tensor. A remarkable feature of this
curvature is that it satisfied the conservation law due to the
identity of Bianchi.
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And it was exactly this conservation law that enabled Einstein to
provide a geometric picture of gravity. Rather than considering
gravity as an attractive force between massive objects, it could
instead be thought of as the consequence of the curvature of
spacetime due to the presence of massive objects. The precise way
in which spacetime is curved tells us how matter is distributed.
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To those readers interested in history, it is always instructive to
find out what Einstein, himself, had to say on the subject. “Since
the gravitational field is determined by the configuration of masses
and changes with it, the geometric structure of this space is also
dependent on physical factors,” he wrote. “Thus, according to this
theory, space is—exactly as Riemann guessed—no longer absolute;
its structure depends on physical influences. [Physical] geometry is
no longer an isolated, self-contained science like the geometry of
Euclid.”
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But it still took Einstein many years to formulate his famous field
equations. First he developed the special theory of relativity,
establishing the equivalence of so-called inertial frames of
reference, which he presented in 1905. A couple of years later, he
realized that gravity could not be treated within special relativity,
which was a linear theory, but instead needed to be treated in a
separate, nonlinear theory.
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He then began to work on the latter theory, which came to be
known as general relativity, admitting that “it took me a long time
to see what coordinates at all meant in physics.” The notion of
equivalence, which held that the laws of gravity should be true in
any coordinate system, had been his guiding principle. By 1912 he
started to realize that the gravitational potential should be
described by a second-order symmetric tensor— a Riemannian
metric with a Lorentzian signature.
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Two additional problems had to be solved as well, Einstein noted:

1. How can a field law, expressed in terms of the special theory of
relativity, be transferred to the case of a Riemannian metric?

2. What are the laws that determine the Riemannian metric
itself?

22



He worked on these problems from 1912 to 1914 with Grossman.
Together they determined that the mathematical methods for
solving the first problem could be found in the differential calculus
of Ricci and Levi-Civita. They further discovered that the solution
of the second problem depended on a mathematical construction
(“differential invariants of the second order”) that had already
been established by Riemann.
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However, his collaboration with Grossman did not lead to the final
form of the field equation of gravity, as the equation they found
was not covariant and did not satisfy the conservation law. In
November 1915 he finally found the correct version of his equation,
which was around the same time that David Hilbert did so
independently. But Einstein carried things an important step
further, as he alone was able to link his theory with “the facts of
astronomical experience.”
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Reflecting on his accomplishment, Einstein wrote, “In the light of
the knowledge attained, the happy achievement seems almost a
matter of course, and any intelligent student can grasp it without
too much trouble. But the years of anxious searching in the dark,
with their intense longing, their alternations of confidence and
exhaustion, and the final emergence into the light — only those
who have experienced it can understand that.”

Einstein’s struggle to understand gravity is remarkable and his
success in this area even more so. One thing that is resoundingly
apparent is the critical contribution of Riemannian geometry to
that effort.
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When I looked at the equations of Einstein more than a half
century later, I was intrigued by the fact that matter only controls
part of the curvature of spacetime. I wondered whether we could
construct a spacetime that is a vacuum, and thus has no matter,
yet its curvature is still pronounced, meaning that its gravity would
be nonzero. Well, the famous Schwarzschild solution to Einstein’s
equations is such an example. This solution applies to a
non-spinning black hole — a vacuum that, curiously, has mass
owing to its extreme gravity. But that solution admits a singular
point, or singularity— a place where the laws of physics break
down.

Black hole
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I became interested in a different situation —a smooth space
without a singularity that was compact and closed, unlike the
open, extended space of the Schwarzschild solution. The question
was: Could there be a compact space that contained no
matter— a closed vacuum universe, in other words —whose force
of gravity was nontrivial? I was obsessed with this question and
believed that such a space could not exist. If I could prove that, I
was sure that it would be an elegant theorem in geometry.
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III. Calabi Conjecture

When I started thinking about this in the early 1970s, I did not
realize that the geometer Eugenio Calabi had posed almost the
exact same question. Calabi framed the problem in fairly
complicated mathematical language — involving difficult concepts
like K?hler manifolds, Ricci curvature, and Chern classes — that
ostensibly had nothing to do with physics. Yet his abstract
conjecture could also be framed in terms of Einstein’s theory of
general relativity.
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The additional information that he put in is that the space should
admit some kind of internal symmetry called supersymmetry–a
term coined by physicists. (Expressed in the language of geometry,
this means an internal symmetry created by some constant
spinors —constant in this case meaning spinors that are parallel. In
the case of six-dimensional space, spaces with nontrivial constant
spinors are Kähler manifolds unless the space is the Cartesian
product of lower-dimensional spaces.) In that context, Einstein’s
question translated to: Can there be gravity, or the curving of
space, in a closed vacuum — a compact supersymmetric space that
has no matter?
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For about three years, my friends and I tried to prove that the class
of spaces proposed by Calabi could not exist. We, along with many
others, considered them to be “too good to be true.” We were
skeptical not only because the conjecture argued for the existence
of a closed vacuum with gravity but also because it implied that
there was a systematic way of constructing many such examples.
Despite the reasons we had for finding Calabi’s argument dubious,
try as we might, we could not prove that such spaces do not exist.

With Prof. Calabi, 2004
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About 30 years ago I was an assistant professor at Stony Brook. I
had some correspondence with Robert Osserman on surface theory,
and he seemed interested in my work on minimal surfaces. Since
my girlfriend was in California at the time, I decided to ask
whether I might be able to come to Stanford during the next year.
To my surprise, Osserman replied immediately and offered me a
visiting position.

Robert Osserman Minimal surface
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In late May of that year, I drove across the country with a
graduate student. It was a long journey, and quite an experience,
as both of us were relatively new to driving. Fortunately, I made it
to Berkeley intact, with both the vehicle and my driving
companion in one piece. There I met up with my friend S.-Y.
Cheng and together we went to Stanford to settle down. I worked
hard on some papers that were to be presented at a huge
three-week conference at Stanford in August.

With S.-Y. Cheng and S.-S. Chern
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Osserman and my teacher S.S. Chern organized the conference.
Perhaps my connections with them allowed me to present not one
but two talks at this conference. But when I told some friends,
while the meeting was underway, that I’d just found a
counterexample to the Calabi conjecture, many geometers insisted
that I give a separate presentation that evening. About 30
geometers gathered together on the third floor of the math
building. The audience included Calabi, Chern, and other
prominent mathematicians. I described my construction, and
everybody seemed happy with it.
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Calabi himself advanced an argument as to why this approach
should work. At the end of the conference, Chern announced that
this counterexample was, arguably, the best outcome of the entire
conference. I was astonished but happy.
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However, about two months later, reality set in. Calabi wrote me a
letter regarding some points in my argument that he could not
understand. When I received his letter, I immediately realized that
I had made a mistake. I tried hard to come up with a new
argument, working for two weeks straight with practically no sleep,
pushing myself to the brink of collapse. Each time I found a
possible counterexample, I soon found a subtle reason as to why it
could not work. After many such abortive attempts, I concluded
that the conjecture must be correct after all.
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Once I made up my mind, I switched gears completely, putting all
my energies into proving it right. I finally did so, several years
later, in 1976. An additional bonus was that many of my failed
counterexamples became important theorems of their own years
later when I finally proved that the conjecture was correct.
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I should say that at the same Stanford conference, the physicist
Robert Geroch gave a talk on an important question in general
relativity called the positive mass conjecture, which holds that the
total mass or energy in any closed physical system must be
positive. Schoen and I eventually proved this conjecture after some
difficult calculations involving minimal surfaces and a lot of hard
work. I still remember that the first hint of a possible solution hit
us during a conversation we had while walking towards my
apartment on the lawns of the west campus of Berkeley.
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The experience led us to think more about general relativity, and
we eventually proved some theorems about black holes. My work
on the positive mass conjecture has led me to explore ideas about
mass, in general, and the definition of “local” mass, in
particular-notions that are, surprisingly, still poorly defined in
general relativity, despite the theory’s success for nearly a century.

My favorable interactions with general relativists also made me
more open to collaborating with physicists in the development of
string theory, although that didn’t come until several years later.
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In my proof of the Calabi conjecture, I fond a general mechanism
to construct spaces satisfying Calabi’s equations, which are now
called Calabi-Yau spaces. I had a strong sense that I had somehow
stumbled onto a beautiful piece of mathematics. And as such, I
felt it must be relevant to physics and to our deepest
understanding of nature. However, I did not know exactly where
these ideas might fit in, as I didn’t know much physics at the time.
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IV. String Theory

About 25 years ago I received phones calls from two physicists,
Gary Horowitz and Andy Strominger. They were excited about a
model for describing the vacuum state of the universe, based on a
new theory called string theory.

Gary Horowitz Andy Strominger
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String theory is built on the assumption that particles, at their
most basic level, are made of vibrating bits of strings — and
exceedingly tiny strings at that. In order for the theory to be
consistent with quantum mechanics (at least in some versions of
string theory), spacetime requires a certain symmetry built into it
called supersymmetry. Spacetime is also assumed to be
ten-dimensional.

Vibrating strings
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Horowitz and Strominger became interested in the
multidimensional spaces whose existence I proved, mathematically,
in my confirmation of the Calabi conjecture. They believed that
these spaces might play an important role in string theory, as they
seemed to be endowed with the right kind of supersymmetry — a
property deemed essential to the theories they were working on.
They asked me if their assessment of the situation was correct and,
to their delight, I told them that it was. Or at least might be.
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Then I got a phone call from Edward Witten whom I’d met in
Princeton the year before. Witten believed that this was the one of
the most exciting eras in theoretical physics, just like the time
when quantum mechanics was being developed.

Witten
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He told me that everyone who made contributions to quantum
mechanics in early days left their mark on the history of physics.
He said that the important discoveries of early string theorists,
such as Michael Green and John Schwarz, could lead to the grand
unification of all forces — the goal that Einstein had spent the last
30 years of his life working toward, although he did not succeed in
the end.
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Witten was now collaborating with Candelas, Horowitz, and
Strominger, trying to figure out the shape, or geometry, of the six
“extra” dimensions of string theory. The physicists proposed that
these six dimensions were curled up into a miniscule space, which
they called Calabi-Yau space — part of the same family of spaces,
which Calabi originally proposed and I later proved to exist.

With Candelas, 2001
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String theory, again, assumes that spacetime has 10 dimensions
overall. The three large spatial dimensions that we’re familiar with,
plus time, make up the four-dimensional spacetime of Einstein’s
theory. But there are also six additional dimensions hidden away in
Calabi-Yau space, and this invisible space exists at every point in
“real space,” according to string theory, even though we can’t see
it.
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The existence of this extra-dimensional space is fantastic on its
own, but string theory goes much farther. It says that the exact
shape, or geometry, of Calabi-Yau space dictates the properties of
our universe and the kind of physics we see. The shape of
Calabi-Yau space — or the “shape of inner space,” as we put it in
our book - determines the kinds of particles that exist, their
masses, the ways in which they interact, and maybe even the
constants of nature.
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In their attempts to derive the particles of nature, theoretical
physicists rely on something called the Dirac operator. Analyzing
the spectrum of this operator reveals the variety of particles that
we might see. Based on the principle of separation of variables on
this ten-dimensional spacetime, which is the product of the
four-dimensional spacetime with the six-dimensional Calabi-Yau
space, we know that part of the spectrum is contributed by the
Calabi-Yau space. Particles with nonzero spectrum will be
extremely large if the diameter of the Calabi-Yau space is very
small. We do not expect to observe any of these particles, as they
would only appear at incredibly high energies.
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But particles with zero spectrum are potentially observable and can
be calculated from the topology of the Calabi-Yau space. This
gives you an idea of why the topology of this tiny, six-dimensional
space could play an important role in physics.
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While Einstein had said the phenomenon of gravity is really a
manifestation of geometry, string theorists boldly proclaimed that
the physics of our universe is a consequence of the geometry of
Calabi-Yau space. That’s why string theorists were so anxious to
figure out the precise shape of this six-dimensional space - a
problem we’re still working on today.
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Witten was eager to learn more about Calabi-Yau spaces. He flew
from Princeton to San Diego to talk with me about how to
construct them. He also wanted to know how many Calabi-Yau
spaces there were for physicists to choose among. Initially,
physicists thought there might only be a few examples — a few
basic topologies — which made the goal of determining the
“internal” shape of our universe seem a lot more manageable. But
we soon realized there were many more examples of Calabi-Yau
spaces–many more possible topologies — than were originally
anticipated. I guessed that there were tens of thousands of these
spaces, and that number has grown considerably since then.
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The task of figuring out the shape of inner space suddenly seemed
more daunting, and perhaps even hopeless if the number of
possibilities turned out to be infinite. The latter question has yet
to be settled, although I have always thought that the number of
Calabi-Yau’s is finite. That number is certain to be big, but I
believe it is bounded.
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One reason for thinking that stems from a theorem by Kollr,
Miyaoka, and Mori, which showed that for each dimension the
number of compact manifolds (or spaces) with positive Ricci
curvature is indeed finite. Calabi-Yau spaces are compact as
well —meaning they cannot extend to infinity–but they have zero
Ricci curvature, rather than positive Ricci curvature, so they
should be considered a “borderline” case. Normally when
something is proven true for spaces of positive curvature it is likely
to be true for spaces of nonnegative curvature, which would thus
include Calabi-Yau spaces. Moreover, after two-and-a-half decades
of investigating these spaces, we’ve found no hint of any method
that would enable us to construct an infinite number of them.
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The excitement over Calabi-Yau spaces started about 25 years ago,
when physicists first began to see how these complex geometries
might fit into their new theories. That enthusiasm kept up for a
few years, before waning. But interest in Calabi-Yau spaces picked
up again a couple of years later, when Brian Greene, Ronen
Plesser, Philip Candelas, and others began exploring the notion of
“mirror symmetry.”

Greene Plesser

54



The basic idea here was that two different Calabi-Yau spaces,
which had different topologies and seemed to have nothing in
common, nevertheless gave rise to the same physics. This
established a previously unknown kinship between so-called mirror
pairs of Calabi-Yau spaces.
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A conjecture proposed in 1995 by Strominger, Yau, and Zaslow
offered insights into the substructure of a Calabi-Yau space.
According to the so-called SYZ conjecture, a six-dimensional
Calabi-Yau space can essentially be divided into two,
three-dimensional spaces. One of these spaces is a
three-dimensional torus. First you take the torus and “invert” it,
through an operation similar to switching its radius from r to 1/r.
When you combine the inverted torus with the other
three-dimensional space, you’ll have the mirror manifold of the
original Calabi-Yau space. This conjecture provides a geometrical
picture of mirror symmetry though it has only been proven for
special cases and has not yet been proven in a general sense.
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The connection between mirror manifolds, which was uncovered
through physics, proved to be extremely powerful in the hands of
mathematicians. When they were stumped trying to solve a
problem involving one Calabi-Yau space, they could try solving the
same problem on its mirror pair. On many occasions, this approach
was successful. As a result, mathematical problems of counting
curves that had defied resolution, sometimes for as long as a
century, were now being solved. (The German mathematician
Hermann Schubert investigated many of these problems in the
19th century.) And a branch of mathematics called enumerative
geometry was suddenly rejuvenated. These advances gave
mathematicians greater respect for physicists, as well as greater
respect for string theory itself.
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Mirror symmetry is an important example of what we call a duality.
It sheds light on the deep geometry of Calabi-Yau space. It has
also helped us solve some very difficult questions of counting
rational curves of various degrees on the quintic with five variables,
which is a kind of Calabi-Yau space.
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This problem, named after Schubert, dates back to the 19th
century. Schubert showed that the number of degree one rational
curves on a quintic is 2,875. In 1986, Sheldon Katz found that
there are 609,250 degree two curves. Then around 1989, two
Norwegian mathematicians Geir Ellingsrud and Stein Str?mme
found that number of degree three curves-based on algebraic
geometry techniques–was 2,683,549,425. Relying on a string
theory approach, a group of physicists, led by Candelas, arrived at
a different number, 317,206,375. The physicists, however, had
used a formula that, up to then, had not been motivated by
mathematical principles. As such, rigorous justification of that
formula still awaited confirmation by mathematicians.

59



In January of 1990, I organized the first major meeting between
string theorists and mathematicians at the urging of Isadore
Singer. The event took place at the Mathematical Sciences
Research Institute MSRI) in Berkeley. At this meeting there was a
somewhat tense debate regarding who was right, Ellingsrud and
Strømme or the Candelas team. The discrepancy between the two
camps lasted a few months until the mathematicians discovered a
mistake in their computer code. After they corrected that error,
their number agreed perfectly with that put forth by the physicists.
And ever since then, mathematicians have begun to appreciate the
depth of the insight provided by the string theorists.
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The episode also provided firm evidence that mirror symmetry had
a mathematical basis. It took several years but eventually a
rigorous mathematics proof of mirror symmetry-and a validation of
the Candelas, et al. formula–was achieved independently by
Givental and Lian-Liu-Yau.
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V. Conclusion

Before we get too carried away, we should bear in mind that string
theory, as the name suggests, is just a theory. It has not been
confirmed by physical experiments, nor have any experiments yet
been designed that could put that theory to a definitive test. So
the jury is still out on the question of whether string theory
actually describes nature, which was, of course, the original intent.

62



On the positive side of the ledger, some extremely intriguing, as
well as powerful, mathematics has been inspired by string theory.
Mathematical formulae developed through this connection have
proved to be correct, and will always remain so, regardless of the
scientific validity of string theory. Although it is empirically
unproven, string theory now stands as the only consistent theory
that unifies the different forces. And it is beautiful. Moreover, the
effort to unify the different forces of nature has unexpectedly led to
the unification of different areas mathematics that at one time
seemed unrelated.
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We still don’t know what the final word will be. In the past two
thousand years, the concept of geometry has evolved over several
important stages to the current state of modern geometry. Each
time geometry has been transformed in a major way, the new
version has incorporated our improved understanding of nature
arrived at through advances in theoretical physics. It seems likely
that we shall witness another major development in the 21st
century, the advent of quantum geometry - a geometry that can
incorporate quantum physics in the small and general relativity in
the large.
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In this regard, I quote Rieman in the final section of his lecture
“application to space” : “The question of the validity of the
hypotheses of geometry in the infinitely small is bound up with the
question of the metric relations of space ...... Either therefore the
reality which underlies space must form a discrete manifoldness, or
we must seek the ground of its metric relations outside it, in
binding forces which act upon it.”
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The fact that abstract mathematics can reveal so much about
nature is something I find both mysterious and fascinating. This is
one of the ideas that my coauthor and I have tried to get across in
our book, The Shape of Inner Space. One of the objectives of this
book is to explain how mathematicians view the world. At heart
we’re just scientists who look at nature from a different, more
abstract point of view than the empiricists. But the work
mathematicians do is still based on the truth and beauty of nature,
the same as it is in physics. One idea I’ve tried to get across is the
thrill of working at the interface between mathematics and physics,
showing how important ideas flow through different disciplines,
with the result being the birth of new and important subjects.
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In the case of string theory, geometry and physics have come
together to produce some beautiful mathematics, as well as some
very intriguing physics. The mathematics is so beautiful, in fact,
and it has branched out into so many different areas, that it makes
you wonder whether the physicists might be onto something after
all.

The story is still unfolding, to be sure. I consider myself lucky to
have been part of it and hope to stay involved in this effort for as
long as I can contribute.
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