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Systematic optimization of long-range corrected hybrid density functionals
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A general scheme for systematically modeling long-range corrected (LC) hybrid density functionals
is proposed. Our resulting two LC hybrid functionals are shown to be accurate in thermochemistry,
kinetics, and noncovalent interactions, when compared with common hybrid density functionals.
The qualitative failures of the commonly used hybrid density functionals in some “difficult
problems,” such as dissociation of symmetric radical cations and long-range charge-transfer
excitations, are significantly reduced by the present LC hybrid density functionals. © 2008
American Institute of Physics. [DOL: 10.1063/1.2834918]

I. INTRODUCTION

In the last two decades, density functional theory1 (DFT)
based on the Kohn-Sham (KS) approach2’3 has been attract-
ing considerable attention.*” Due to its favorable scaling
with system size and reasonable accuracy in many applica-
tions, KS-DFT has been regarded as one of the most power-
ful theoretical tools for studying both electronic and dynamic
properties of medium to large ground-state systems. Re-
cently, the development of time-dependent density functional
theory (TDDFT) for treating excited-state systems has also
been making considerable progress.6’7

In KS-DFT, the exact exchange-correlation energy func-
tional E,[p], however, remains unknown, and needs to be
approximated. Functionals based on the local spin density
approximation (LSDA) have been successful for nearly-free-
electron systems.4’5 However, for molecular systems, where
electron densities are highly nonuniform, the severe
overbinding tendency of LSDA means it is not sufficiently
accurate for most quantum chemical applications.

Functionals based on the semilocal generalized gradient
approximations (GGAs) have considerably reduced the er-
rors associated with the LSDA and have shown reasonable
accuracy for atomization energies of many strongly bound
systems.8 For some weakly bound systems, such as
hydrogen-bonded systems, GGAs are still reasonable for the
energetics and geometries. However, GGAs can completely
fail for van der Waals systems. For such systems, GGAs give
insufficient binding or even unbound results. Moreover,
GGAs tend to give predicted barrier heights of chemical re-
actions that are usually seriously underestimated.

Both of the LSDA and GGAs (commonly denoted as
DFAs for density functional approximations) are based on
the localized model exchange-correlation holes. The exact
exchange-correlation hole is, however, fully nonlocal. There-
fore, the success of DFAs is commonly believed to be due to
a cancelation of errors between the DFAs for exchange and
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correlation.*” In situations where the cancelation of errors is
not complete, the DFAs can produce erroneous results. No-
ticeably, some of these situations occur in the asymptotic
regions of molecular systems, where the electron densities
decay exponentially. In such regions, due to the severe self-
interaction error (SIEs) of DFAs, the DFA exchange-
correlation potential exhibits an exponential decay, instead of
the correct —1/r decay. This leads to many qualitative fail-
ures for problems such as dissociation of cations with odd
number of electrons or even the alkali halides.”'® In time-
dependent DFT, SIE causes dramatic failures for long-range
charge-transfer  excitations of two  well-separated
molecules." ™" The spatially localized nature of DFAs also
leads to the absence of London forces, which are a long-
range correlation effect. Therefore, to circumvent the above
difficulties, it seems necessary to incorporate part or all of
the nonlocality of the exchange-correlation hole into the
DFAs.

Hybrid DFT methods, which combine KS-DFT with
wave function theory (WFT), are promising as a cost-
effective way to incorporate nonlocality of the exchange-
correlation hole into the DFAs. They can provide reasonable
accuracy for treating large-scale systems. In fact, the most
widely used density functionals in quantum chemistry are all
hybrid functionals! This happy marriage of KS-DFT and
WEFT was first proposed by Becke,"* who argued that mixing
a small fraction of the exact Hartree-Fock (HF) exchange
(associated with the Kohn—Sham reference wave function)
with DFAs will provide the desired nonlocality and thereby
generally improve the DFA results. The general form of a
hybrid density functional can be written as

Ey = c,ENF 4 EPFA, (1)

where c, is a small fractional number, typically ranging from
0.2 to 0.25 for thermochemistry,14 and from 0.4 to 0.6 for
kinetics. "

Indeed, a remarkable accuracy has been achieved by hy-
brid density functionals. For example, one of the most
widely used hybrid density functionals, B3LYP,'*'® a com-
bination of the B88 exchange functional'” and the LYP cor-
relation functional,'® has achieved a better accuracy for
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many strongly bound systems than the second-order Moller-
Plesset perturbation theory (MP2)." Since then, there have
been considerable efforts to improve E,[p] relative to
B3LYP. The development of hybrid density functionals has
facilitated the transition of KS-DFT from solid-state physics
into the realm of quantum chemistry as well.

In 1997, another significant advance in KS-DFT was
also made by Becke, who proposed to model exchange-
correlation functionals by a systematic procedure.20 Similar
to expanding molecular orbitals by linear combinations of
atomic orbitals, he proposed to expand E,[p] using power
series expansions involving only the local spin density and
its first derivative, in addition to a small fraction of the HF
exchange. The linear coefficients in the expansions are opti-
mized from a systematic fitting procedure to a set of reliable
experimental data (the so-called training set). Due to the high
flexibility of his functional forms, his resulting B97 func-
tional has achieved impressive accuracy for thermochemis-
try. Since then, additional attempts have been made to devise
good basis functionals, which have led to many quite accu-
rate E,[p], such as VSXC,*' B97-1,* B97-2,”* B97-3*
BMK," the HCTH family,”**** and M05-2X.’

However, a few serious problems still remain in these
global hybrid density functionals. As can been seen from Eq.
(1), the exchange-correlation potential decays as —cy/r, not
the correct —1/r decay. This still leads to qualitatively incor-
rect results for charge-transfer (CT) excited states of
molecules.!' ™" Although the use of full HF exchange may
remedy these difficulties, a DFA for correlation is, however,
incompatible with the fully nonlocal HF exchange due to the
absence of good cancelation of errors between them, al-
though efforts to develop entirely new post-Hartree—Fock
correlation functionals show promise.28 A similar difficulty
applies to optimized effective potential approaches at
present.

To make progress, the long-range corrected (LC) hybrid
density functionals have been receiving increasing
attention.”*™* LC hybrids retain full HF exchange only for
long-range electron-electron interactions (i.e., the asymptotic
regime), and thereby resolve a significant part of the self-
interaction problems associated with global hybrid function-
als. However, the currently used LC hybrid functionals are
still not as accurate as the best global hybrid functionals,
especially for thermochemistry.

Aiming to improve on this situation, here we propose
suitable basis functionals for constructing LC hybrid density
functionals. Our two resulting LC hybrid density functionals
are shown to be accurate in many applications, such as ther-
mochemistry, kinetics, and noncovalent interactions, when
compared with the widely used global hybrid functionals.
The rest of this paper is organized as follows. In Sec. II, we
briefly describe the rationale for the LC hybrid approach. In
Sec. III, we propose the suitable basis functionals for system-
atically generating accurate LC hybrid functionals. The per-
formance of the two new LC hybrid functionals is compared
with that of other functionals in Sec. IV (on the training set),
and in Sec. V (on some test sets). In Sec. VI, we give our
conclusions.
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Il. RATIONALE FOR THE LC HYBRID SCHEME

For the LC hybrid scheme, one first defines long-range
(LR) and short-range (SR) operators to partition the Cou-
lomb operator. In the first LC scheme, proposed by Savin
and co-workers, the LR part is treated by WFT [such as
configuration interaction (CI)], and the SR part is treated by
DFT. 7 Its advantage is to reduce the cost of CI calculation
in a finite set of one-electron basis functions, as the LR op-
erator is chosen to be nonsingular at electron-electron coa-
lescence (and hence the basis does not have to represent the
cusp). Since DFAs perform well for the short-range interac-
tion, this type of approach has been gaining some attention.
However, the need for high-level WFT for the LR interaction
and the need to develop a generally accurate SR exchange-
correlation functionals still hinder its progress.

Using the LSDA expression for the SR exchange from
Refs. 31 and 45, a simplified LC hybrid scheme was first
proposed by likura et al.*” In this scheme, the LR exchange
is treated exactly by HF theory, while the SR exchange is
approximated by DFAs, and the correlation functional re-
mains the same as that of the full Coulomb interaction,

E;C_DFAz E};R_HF+ E)SCR»DFA_'_ EIC)FA. (2)

This greatly reduces the computational cost of the LC hybrid
scheme, as the cost now is almost the same as the existing
global hybrid scheme! In this work, we therefore focus on
this type of LC hybrid scheme. The remaining problems are
the choice of the SR and LR operators, the development of
an accurate SR exchange density functional, and the devel-
opment of a correlation functional that is compatible with it.

The most popular type of splitting operator used in the
LC hybrid scheme is the standard error function (erf),

1 erfl erfc
2 (wryy) + (wru)’ 3)

T2 2 r2

where r,=|r},|=|r,-r,| (atomic units are used throughout
this paper). On the right hand side of Eq. (3), the first term is
long ranged, while the second term is short ranged. The pa-
rameter w defines the range of these operators. In principle,
different types of operators can also be used in the LC hybrid
approaches. In this work, we employ the erf/erfc partition, as
it is particularly straightforward to implement efﬁciently.46

For the simplest LC hybrid functional, the local spin
density approximation is used for the DFAs. The LR HF
exchange EL“R_HF is computed by the occupied spin orbitals
;,(r) with the LR operator,

E}];R—HFz _ %E E f f zp;ko(rl)lﬂ;(n)
g 1)

X erf(rﬂ‘ﬂig(rz) Uio(ry)dr dr,, “
12

while the analytical form of the SR LSDA exchange func-
tional E§R'LSDA can be obtained by the integration of the
square of the LSDA density matrix with the SR operator,45
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EFPA= 2 f & M (po)dr. (5)
(o8
Here, 3R1SPA(5 ) is the SR LSDA exchange energy density
for o-spin,
3/ 3 1/3
e P (py) = - —(—) pa’(r)F(a,), (6)
2\4

where kp,=(67p,(r))"? is the local Fermi wave vector,
and a,= w/(2kg,) is a dimensionless parameter controlling
the values of the attenuation function F(a,,),

8 1
F(a,)=1- gag{ \/7_7 erf<2—> -3a,+ 4a?,

Ay

+(2a,- 4a?,)exp<— ﬁ) } ) (7)

o

Retaining the LSDA correlation functional E{TSD A one then
has the simplest range-separated extended LDA (RSHX-
LDA) hybrid functional,”

RSHXLDA _ pLR-HF | SR-LSDA | rLSDA
E. =E T +E; +ESCN (8)

The optimal w values for RSHXLDA were found to be
0.5 bohr™! (Refs. 39) for molecular systems, and 0.4 bohr™!
for solid-state systems.40 However, due to its insufficient ac-
curacy for thermochemistry, the development of gradient-
corrected LC hybrid functionals continues attracting much
attention, and will be our focus.

A relatively narrow range of ® values (from
0.2 to 0.5 bohr™"). (Refs. 31, 32, 34, and 37-44) have been
found for existing LC hybrid functionals by optimization of
properties of interest. As can been seen in Eq. (3), the smaller
the w value is, the longer ranged the SR operator will be. As
a result, the use of a small w value in a LC hybrid functional
implies that its SR exchange, which is actually not so short
ranged, is approximated by spatially localized DFAs. Since
the DFA exchange hole is semilocal and it strictly follows its
reference electron, for relatively small w values, the nonlo-
cality of the exchange hole for this not-very-short-ranged
electron-electron exchange interaction should still be impor-
tant, and may not be adequately captured by SR DFA ex-
change alone.

To remedy this, we argue that mixing with a small
amount of the SR HF exchange should be helpful. Similar to
Becke’s adiabatic-connection argument14 for mixing a frac-
tion of HF exchange with DFT, mixing a small fraction of
the SR HF exchange with the SR DFA exchange should also
improve thermochemistry and provide the desired nonlocal
correction to the SR exchange. Furthermore, this does not
affect the already correct LR behavior of the LC hybrid func-
tionals. Similar arguments for the importance of the SR HF
exchange were also made in Ref. 47.

Hence, we propose the following expression for the LC
hybrid functionals:

LC-DFA _ pLR-HF SR-HF | 7.SR-DFA , p.DFA
E.. =E7 + o ET+E] +E, 9)

where EER'HF is the SR HF exchange,
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1 ocCcC. . -
E)SCR-HF= _ EE 2 J f tp[.'o(l‘l)lﬂj:a(l‘l)
[N

X M l//i(r(rz) l//j(,.(l'z)dl‘ldl'z > ( I 0)
12

and c, is a fractional number to be determined.

lll. SYSTEMATIC OPTIMIZATION

From the above arguments, the key ingredient for a suc-
cessful LC hybrid functional is to construct a generally ac-
curate ESFP™ that is compatible with the EP™, the fraction
of EER'HF, and the full EL“R'HF. Since the optimal w for LC
hybrid scheme is expected to be small, the optimal form of
EfR'DF A should be close to that of E?F A Therefore, a minor
modification to E?F A may provide a good starting point for
developing accurate EfR'DFA.

Since the uniform electron gas (UEG) limit of SR ex-
change is believed to be the leading contribution to the SR
DFA exchange, and cannot be satisfied by any E)]C)FA (unless
w=0), we remedy this by replacing the LSDA exchange en-
ergy density ¢-3P*(p,) with the SR-LSDA exchange energy
density ef}}'LSDA(p(,) [in Eq. (6)], while retaining its enhance-
ment factor (gradient-corrected terms). In general, the en-
hancement factor of the SR-DFA exchange should be
w-dependent, as the second-order gradient expansion of SR
exchange depends on . For a sufficiently small w value,
however, our proposed functional form should be a good
approximation.

To achieve a flexible functional form to represent the SR
DFA exchange, we modify the B97 exchange functional® by
replacing ei‘sDA(pU) with e)SC(I}’LSDA(pU) [in Eq. (6)], and de-
note this functional as SR-B97 (short-range B97) exchange,
as it reduces to the B97 exchange functional at w=0.

EXPT=3 f S SPA (p,)g o (s2)dr, (11)
gxo’(sfzr) = E Cxo’,iuig-a (12)
i=0

where gm(si) is a dimensionless inhomogeneity correction
factor depending on the dimensionless reduced spin density

gradient 5,=|Vp,|/p¥?, and the expansion function u,,,

Ui = VeoSel (1 + YegS2), (13)

Y= 0.004. (14)

We use the same form for the correlation functional as
the B97 correlation functional, which can be decomposed
into same-spin E2 and opposite-spin Eff; components,

E?97 — E EB97 + EB97 (15)

coo caf*
o

For the same-spin terms,
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Eioo= f Croo ()8 cao(5o)dr. (16)
gco’o'(si') = E CCU'tT,iuia'o" (17)
i=0
Ueos= YeaoSo/ (1 + Yeaos) s (18)
Yeoo = 02, (19)
and for the opposite-spin terms,
B [ B oppseassar, )
gcaﬁ(siv) = E Ccaﬁ,iuiaﬁ” (21)
i=0
ucaﬁ = ‘)’caﬁsiv/(l + 7caﬁs§v)’ (22)
Yeap = 0.0006, (23)
=12+ sfg) (24)
The correlation energy densities e->°* and eCLSBDA are derived

from PerdeW—Wang parametrization of the LSDA correla-
tion energy, using the approach of Stoll et al.”

oM p,) = e-"(p,0), (25)
ernn (Papp) = e N (panpp) — €PN (P, 0)

Based on the above functional expansions, we propose
two new LC hybrid functionals, ®B97 and wB97X. wB97
has no SR HF exchange (like most of the LC hybrid func-
tionals),

E@BYT _ pLRHF  pSR-BO7 | pBY7 (27)
XC X X c °

By contrast, ¥B97X contains a small fraction of the SR HF

exchange (the “X” stands for the use of the SR HF ex-

change),

Ech97X :E}V‘R—HF%- CXEER_HF+E§R_B97 +E§97~ (28)

We determined the optimal w values, the linear expan-
sion coefficients, the expansion order m of E“®?7 and E“P¥7%
by least-squares fittings to 412 accurate experimental and
accurate theoretical results (the training set), including the 18
atomic energies from the H atom to the Ar atom,50 the at-
omization energies of the G3/99 set>’™? (223 molecules), the
ionization potentials (IPs) of the G2-1 set” [40 molecules,
excluding SH, (*A;) and N, (*I1) cations due to the known
convergence problems for pure density functionals®?], the
electron affinities (EAs) of the G2-1 set (25 molecules), the
proton affinities (PAs) of the G2-1 set (8 molecules), the 76
barrier heights of the NHTBH38/04 and HTBH38/04
sets,ss’56 and the 22 noncovalent interactions of the S22 set.”’
All data are equally weighted in the least-squares fitting. By
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choosing a diverse range of training data, our goal is to
achieve optimized functionals whose performance is well-
balanced across typical applications.

We enforce the exact UEG limit for the wB97 and
wB97X functionals by imposing the following constraints:

CCU’U’,O =1 s (29)

Ceapo=1, (30)

Cro0=1, for EB%T, (31)
and

CrootCy=1, for E2PIX, (32)

Searching for the optimal parameters for wB97 and
wB97X naively seems impractical due to the use of large
number of empirical parameters. Following Van Voorhis and
Scuseria,”' our parameters are obtained by an iterative pro-
cedure. First, we focus on a limited range of possible w
values between 0.0 and 0.5 bohr™! based on those studied in
previous LC hybrid functionals. For each w value (0.0, 0.1,
0.2, 0.3, 0.4, or 0.5 bohr ™), the corresponding RSHXLDA
orbitals® are used as the initial guess orbitals for least-
squares fitting. We then obtain, for each w value, a new set of
linear expansion coefficients. With this new set of linear ex-
pansion coefficients, the corresponding self-consistent orbit-
als can be obtained and then used for another least-squares
fitting. This procedure is repeated, for each w value, until the
energies and the linear expansion coefficients are sufficiently
close to the previous ones.

Interestingly, we have found that the statistical errors
obtained in the first cycle (using the RSHXLDA orbitals) are
not very different from those obtained self-consistently, even
though the linear expansion coefficients in different iterative
cycles can be different. This indicates that one could have a
good estimate of the performance of proposed functionals,
for each w value, even in its first iterative cycle (this is some-

TABLE 1. Optimized parameters for the ®B97 [in Eq. (27)], and wB97X [in
Eq. (28)].

wB97 wB97X

® 0.4 bohr™! 0.3 bohr™!
Crno 1.00000E + 00 8.42294E-01
Cormod 1.00000E+00 1.00000E+00
Ceapo 1.00000E+00 1.00000E+00
Coon 1.13116E+00 7.26479E-01
Coo 2.55352E+00 _4.33879E+00
Coapi 3.99051E+00 2.37031E+00
Cro —2.74915E+00 1.04760E+00
Coro 1.18926E+01 1.82308E+01
Coaiz ~1.70066E+01 _1.13995E+01
Crr 1.20900E+01 ~5.70635E+00
Corors 2.69452E+01 _3.17430E+01
Coap 1.07292E+00 6.58405E+00
Cros ~5.71642E+00 1.32794E+01
Corot 1.70927E+01 1.72901E+01
Ceaps 8.88211E+00 -3.78132E+00
c, 1.57706E-01

Downloaded 04 Aug 2009 to 140.112.4.235. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



Long-range corrected hybrid density functionals

TABLE II. Statistical errors (in kcal/mol) of the training set, including atomization energies (AEs) of the G3/99
set (233 molecules) (Refs. 51-53 and 61), ionization potentials (IPs) of the G2-1 set [40 molecules, except for
SH, (ZAI) and N, (*II) cations], electron affinities (EAs) of the G2-1 set (25 molecules), proton affinities (PAs)
of the G2-1 set (8 molecules) (Ref. 54), nonhydrogen transfer barrier heights of the NHTBH38/04 set (38
barrier heights), hydrogen transfer barrier heights of the HTBH38/04 set (38 barrier heights) (Refs. 55 and 56),
and the S22 set (22 molecules) for noncovalent interactions (Ref. 57). The B97* and HCTH* functionals are
defined in the text. For all cases, single-point calculations are performed using the 6-311+ +G(3df,3pd) basis
set. For the AE, IP, EA, and PA, the geometries and zero-point energies were obtained at the
B3LYP/6-31G(2df,p) level using a frequency scale factor of 0.9854 for zero-point energies. For the AE, the
scaled (0.9854) thermal correction at the B3LYP/6-31G(2df,p) level and experimental spin-orbital corrections
for the atoms are also used for reversely converting experimental enthalpies of formation to atomization
energies. For the S22 set, counterpoise corrections are used to reduce basis set superposition errors, and

J. Chem. Phys. 128, 084106 (2008)

monomer deformations are not included in the interaction energies.

System Error wB97X wB97 B97* HCTH* B97-1 B3LYP BLYP
MSE -0.09 -0.20 0.54 1.74 -1.58 -4.30 -4.60
G3/99 (223) MAE 2.09 2.56 2.99 4.80 4.85 5.46 9.77
rms 2.86 3.51 4.19 6.27 6.32 7.35 12.97
MSE -0.15 -0.48 2.33 0.37 -0.29 2.16 -1.51
IP (40) MAE 2.69 2.65 3.45 3.70 2.60 3.68 4.42
rms 3.59 3.58 4.59 4.49 3.22 4.80 5.27
MSE -0.43 -1.45 1.03 1.71 -0.90 1.73 0.39
EA (25) MAE 2.05 2.67 2.46 2.60 1.95 2.39 2.58
rms 2.59 3.10 3.25 3.73 242 3.31 3.20
MSE 0.60 0.68 -0.69 1.31 0.62 -0.75 -1.45
PA (8) MAE 1.22 1.45 1.23 1.77 0.99 1.14 1.57
rms 1.72 2.17 1.32 227 1.52 1.35 2.10
MSE 0.56 1.32 -2.21 -6.35 -3.14 -4.57 —-8.68
NHTBH (38) MAE 1.75 2.31 2.67 6.70 3.52 4.69 8.72
rms 2.08 2.82 3.41 8.18 4.26 5.71 10.26
MSE -1.51 -0.34 -2.73 -6.25 -4.76 —4.48 -7.84
HTBH (38) MAE 2.24 2.24 2.89 6.34 4.76 4.56 7.84
rms 2.58 2.62 3.18 7.16 5.39 5.10 8.66
MSE 0.53 0.16 2.64 4.96 2.55 3.94 5.04
S22 (22) MAE 0.87 0.60 2.69 4.96 2.55 3.94 5.04
rms 1.30 0.80 4.06 6.03 3.60 5.16 6.29
MSE -0.15 -0.14 0.27 0.22 -1.58 =277 -4.07
All (394) MAE 2.05 2.39 291 4.83 4.10 4.75 8.05
rms 2.75 3.23 3.98 6.22 542 6.39 10.88

thing we shall employ in assessing the usefulness of the new
functional forms). All of the self-consistent optimizations are
well converged within four iterative cycles.

During the optimization procedure, we found that the
statistical errors are not significantly improved for m>4.
Thus, the functional expansions employed in wB97 and
wB97X are truncated at m=4. For wB97, the range separator
®=0.4 bohr™! is found to be optimal, which is the same re-
sult found by Vydrov et al.*"** and in agreement with recent
arguments made by Fromager et al.”® However, a slightly
smaller optimal value, v=0.3 bohr~!, is found for wB97X.
As might be anticipated, the presence of a small fraction of
the (nonlocal) SR HF exchange allows the SR part to be
longer ranged. The optimized parameters of the wB97 and
wB97X functionals are given in Table I.

The limiting cases where w=0 for ®B97X and wB97 are
especially interesting, as these reduce to the same functional
forms as the existing B97 (Ref. 20) and HCTH (Ref. 22)

functionals, respectively. Therefore, it is important to know
how well B97 and HCTH perform here, when they are both
optimized on the same training set. We thus reoptimize B97
and HCTH functionals on the same training set, truncate
their functional expansions at the same order m=4, and im-
pose the same UEG limit. Their optimizations are done in a
post-LSDA manner (LSDA orbitals are used for the linear
least-squares fittings, instead of using their self-consistent
orbitals). As mentioned above, these post-LSDA results are
believed to be quite close to the fully optimized self-
consistent results. For comparisons within the training set,
we denote these two reoptimized functionals as B97* and
HCTH?*, respectively.

IV. RESULTS FOR THE TRAINING SET

All calculations are performed with a development ver-
sion of Q-CHEM 3.0.% Spin-restricted theory is used for singlet
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states and spin-unrestricted theory for others, unless noted
otherwise. Results for the training set are computed using the
6-311++G(3df,3pd) basis set with the SG-1 grid® for nu-
merically integrating the exchange-correlation contributions.
As is usual in hybrid density functional approaches, the elec-
tronic energy is minimized with respect to the orbitals. The
overall performance of the two new LC hybrid functionals is
compared with B97*, HCTH*, B97-1,” B3LYP,'*!® and
BLYP (Refs. 17 and 18) in Table II. The first two compari-
sons are particularly significant because they indicate how
much improvement is possible with the addition of a single
extra parameter corresponding to making long-range ex-
change exact and thus self-interaction free. The comparisons
with other functionals that are not optimized on the same
training set are interesting but not as significant as the com-
parisons on independent test sets discussed later.

The error for each entry is defined as (error
=theoretical value—reference value). The notation used for
characterizing statistical errors is as follows: Mean signed
errors (MSEs), mean absolute errors (MAEs), root-mean-
square (rms) errors, maximum negative errors (Max(—)), and
maximum positive errors (Max(+)).

A. Thermochemistry

Satisfactory accuracy for thermochemical calculations is
one major criterion to judge the performance of density func-
tionals. The G3/99 set,ﬂf53 compiled by Curtiss et al., is
probably the leading standard test set for this purpose. Fol-
lowing the procedure of G3X theory,61 the optimized
B3LYP/6-31G(2df,p) geometries and zero-point energies
are used for all species. A frequency scale factor of 0.9854 is
used for zero-point energies and thermal corrections,”’ and
atomic spin-orbital effects (corrected by experimental
results”') are included. Enthalpies of formation of free atoms
are taken from experiment.51 The experimental atomization
energies are then obtained from experimental standard en-
thalpies of formation (at 298 K) with a reverse application of
G3X theory.61

The IPs, EAs, and PAs of the G2-1 set>* are determined
at zero temperature and atomic spin-orbit effects are not con-
sidered. As can be seen in Table II, wB97X, wB97, and B97*
provide very accurate thermochemical results, especially at-
omization energies. Their performances on the IP, EA, and
PA training sets are comparable. The important role of long-
range exchange in obtaining good results can be clearly seen
by comparing results for ®B97 with HCTH*: These func-
tionals differ by just one parameter (16 versus 15) but results
are qualitatively improved. The addition of short-range ex-
change controlled by one more mixing parameter in @B97X
leads to further improvements in the quality of results, which
shows that this too is a physically important enhancement to
the functional form.

In Table III, we compare the performance of various
functionals on atomization energies of the G3/99 set. As can
been seen, wB97X performs best, followed by wB97. Since
the G3/99 set is part of the training set for wB97X and
®wB97, one cannot attach much significance to this result—it
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TABLE III. Summary of performance of various functionals for the atomi-
zation energies (in kcal/mol) of the G3/99 set. The last two columns indicate
whether the functionals are exact in the uniform electron gas (UEG) limit
and are long-range corrected (LC) hybrid functionals. The results for the
MCY1 and MCY2 are taken from Ref. 62, and the results for the BMK,
MO05-2X, and LC-wPBE PBE are taken from Ref. 42.

Functional MSE MAE UEG LC
wB97X -0.09 2.09 Yes Yes
wB97 -0.20 2.56 Yes Yes
MCY1 3.16 No Yes
MCY2 3.37 No Yes
BMK 2.68 3.69 No No
MO05-2X 2.84 4.16 Yes No
LC-wPBE 0.93 4.25 Yes Yes
B97-1 -1.58 4.85 No No
B3LYP -4.30 5.46 No No

is a necessary but not sufficient indication of their potential
usefulness. MCY1, MCY2,*? and BMK (Ref. 15) perform
reasonably well on this test set, while M05—2X,27
LC-wPBE,*"*** and B97-1 (Ref. 22) provide only slight im-
provement over the most popular hybrid functional,
B3LYP.'*'® The last two columns in Table III tell whether
the functionals obey the exact UEG limit, and whether they
are LC hybrid functionals.

B. Kinetics

We evaluate the performance of functionals for barrier
heights of chemical reactions in the NHTBH38/04 and
HTBH38/04 sets.”>*® The NHTBH38/04 set contains both
forward and reverse barrier heights for 19 non-hydrogen-
transfer reactions, and the HTBH38/04 set contains both for-
ward and reverse barrier heights for 19 hydrogen-transfer
reactions. The optimized geometries and the reference ener-
gies are taken from Refs. 55 and 56. As can be seen in Table
II, ®¥B97X, wB97, and B97* provide accurate kinetics, com-
pared to HCTH*, B97-1, B3LYP, and BLYP. It is noticeable
that the pure density functional, HCTH*, severely underesti-
mates the barrier heights due to self-interaction errors, de-
spite these data being part of its training set. Furthermore,
the full inclusion of long-range exact exchange in wB97X
and wB97 improves results relative to B97*, showing that it
is important for improving reaction barriers. Detailed infor-
mations for the performance of functionals on these two sets
are also given in Tables IV and V.

C. Noncovalent interactions

For noncovalent complexes in the S22 set,”” we perform
calculations with the usual counterpoise corrections® for re-
ducing the basis set superposition error (BSSEs). Monomer
deformation energies are not included. In Table II, we ob-
serve that all the functionals predict underbinding results,
except for o¥B97X and wB97. Clearly, B97* and HCTH* fail
for noncovalent interactions, even though these data are in-
cluded in their training set. This indicates that there is limited
scope to simultaneously improve thermochemistry, kinetics,
and noncovalent interactions by reoptimizing the parameters
for B97 and HCTH. By contrast, inclusion of exact long-
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TABLE IV. Nonhydrogen transfer barrier heights (in kcal/mol) of the NHTBH38/04 set (Ref. 56).

Reactions AE ¢ ®wB97X wB97 B97-1 B3LYP BLYP
Heavy-atom transfer reactions
H+N,0—O0OH+N, v 18.14 19.22 20.67 15.89 11.36 8.53
v 83.22 80.57 81.93 72.49 72.81 61.66
H+FH—HF+H v 42.18 43.10 44.78 37.93 31.01 26.03
v 42.18 43.10 44.78 37.93 31.01 26.03
H+CIH—HCI+H 74 18.00 20.73 23.17 16.23 12.42 9.81
14 18.00 20.73 23.17 16.23 12.42 9.81
H+FCH;— HF+CHj,4 %4 30.38 32.14 33.46 27.55 21.78 16.11
14 57.02 55.41 55.83 49.63 48.63 42.27
H+F,—HF+F 1 2.27 0.86 1.96 -2.36 -7.54 -11.67
v 106.18 104.27 103.66 98.12 96.17 82.16
CH;+FCl— CH;F+Cl v 7.43 3.93 4.62 -2.15 -1.56 —-6.95
v 60.17 58.52 59.96 51.22 51.08 41.90
Nucleophilic substitution reactions
F~+CH;3;F —FCH;+F~ v -0.34 -2.27 —-2.60 -3.74 -3.93 -7.90
14 -0.34 -2.27 —-2.60 -3.74 -3