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We discuss the silicon-based electron-mediated nuclear spin quantum computer proposed by Kane.
Basically, we reproduce the results in Kane’s paper with more details and describe how single- and
two-qubit operations and measurements can, in principle, be performed.

I. OUTLINE

Kane! proposed a scheme for implementing a quan-
tum computer on an array of nuclear spins located on
donors, phosphorus atoms 3!'P, in silicon. In this pa-
per we discuss this silicon-based electron-mediated nu-
clear spin quantum computer and reproduce mainly the
results in Kane’s paper with more details. In Sec. II,
the basic physics of shallow donor 3!'P, in silicon is pre-
sented. The operation conditions and energy levels calcu-
lated perturbatively for one-qubit and two-qubit systems
are discussed in Sec. III, IV and VI respectively. We
describe in Sec. V single-qubit rotational operations and
the basic idea of the nuclear magnetic resonance (NMR).
A control-not operation for the proposed quantum com-
puter, using? adiabatic variations of gate voltages and
a.c. magnetic field is presented in Sec. VII. We then
describe a method to detect the polarization of a single
nuclear spin by means of electric charge measurement in
Sec. VIII. Next we discuss briefly the problem regarding
the measurement process and continuous observation in
Sec. IX. Issues regarding adiabatic switching for quan-
tum gate operations are discussed in Sec. X.

II. SHALLOW DONOR IN SILICON

One of the considerations for choosing nuclear spins
of 3P in silicon as qubits is that I = 1/2 phosphorus
nuclear spins are extremely well isolated from their envi-
ronment. Their silicon host can in principle be purified
to contain only I = 0 stable isotopes. The replacement of
a silicon atom by a donor 3!P in a silicon host can occur
easily since the atoms have approximately the same size.
The phosphorus atom has five valence electrons. We can
to first approximation assume that four of these electrons,
which fill states rather similar to those of silicon, will
participate in four covalent bonds with the four neighbor
atoms. The extra remaining electron, at low tempera-
ture, is normally bound to the phosphorus atom which
has an additional nuclear charge +e. Thus a P atom be-
haves effectively like a hydrogen-like atom embedded in
silicon. One may obtain an order of magnitude estimate
for the donor Bohr radius, a, and bound state energies,
E,,, using the following hydrogen-like atom formula:
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Given that the static dielectric constant and effective
electron mass in Si: € = 11.7 and m* = m} = 0.2m,
(where m, is the free electron mass, and m? is the
transverse effective mass described later), as well as the
Bohr radius and bound state energies for hydrogen atom:
ap = 0.53A, and EF = —13.6eV/n? with n an positive
integer, we obtain a} ~ 30A and E; ~ —20meV. The es-
timated values of E, indicate that the P donor occupies a
energy level at a distance below the conduction band min-
imum, small compared with the (indirect) conduction-
valence energy band gap (E, = 1.12eV in Si); it is thus
called a shallow donor. One of the purposes of the elec-
trons in Kane’s proposed quantum computer is to medi-
ate nuclear spin coupling. At sufficient low temperatures,
electrons only occupy the lowest energy bound states (1s
orbitals or band) at the donors. The 1s electron wave
function is concentrated at the donor nucleus, yielding
a large hyperfine interaction energy. The estimated val-
ues of a}; implies that the donor electron wave function
extends tens or hundreds of angstroms away from the
donor nucleus, allowing electron-mediated nuclear spin
coupling to occur over comparable distances.

There exists, however, more complexity in the real sit-
uation for silicon semiconductor®. The lowest conduc-
tion band minimum in Si is in the direction [100], and
by (cubic) symmetry in other equivalent [100] directions.
There are thus six conduction band minima near the
zone boundaries around |k| ~ 0.85(27/a), where a is the
lattice constant of Si. The prolate ellipsoid of constant
energy near each conduction band valley has two equal
transverse axes. The dispersion relation, for example,
has the form
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for the ellipsoids [001] and [001], where k.o = 0.85(27/a).
There appears a longitudinal effective mass mj =
0.98 m, and transverse mass mjy = 0.2m.. To obtain
more precise bound state energy levels for 3! P donor elec-
tron in Si, one should take into account the anisotropy of
the conduction band and the interaction between the six
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FIG. 1. Estimated value of 3P 1s electron orbit energy in
Si compared with experimental and theoretical values com-
puted numerically by including the anisotropy of the conduc-
tion band and valley-orbit interaction in Refs.*®. The val-
ley-orbit coupling is largely responsible for the splitting of
the 1s ground state into a singlet of A; symmetry, a triplet
of T» symmetry, and a doublet of E symmetry (by using the
T, point group notation).

degenerate valleys, known as the valley-orbit coupling?®.
Fig. 1 shows the calculated and measured *'P shallow
donor energy levels*® in Si. Note that the degeneracy of
1s ground states of the six equivalent [100] valleys in Si is
broken in the vicinity of the donor due to the valley-orbit
splitting. The shallow donor ground state® has an energy
about —45.5 meV below the Si conduction band edge and
the lowest excited state is approximately 13 meV above
the ground state. This provide a condition to ignore high-
lying single-electron state of the donor atom if the tem-
perature T is such that kgT < AE = 13meV, where kp
is the Boltzmann constant. This condition is well sat-
isfied, as the operation temperature, described in next
section, for the proposed quantum computer is roughly
at T'=100mK (kpT = 0.0086meV). Thus we may treat
the effective low-energy and low-temperature Hamilto-
nian involving only the spin degrees of freedom of the
system.

III. OPERATION CONDITIONS

We now describe the basic operation conditions for
the Si:*'P quantum computer system. Throughout the
computation the electrons must be in a non-degenerate
ground state to avoid irreversible interactions between
electron and nuclear spins occurring as the computa-
tion proceeds. An external magnet field, B, is applied
to break the shallow donor electron ground state two-
fold spin degeneracy. At sufficient low temperature T,
the electron will only occupy the lowest energy spin level

when the electron Zeeman splitting is much larger than
the thermal energy, g.upB > kT, where up is the
Bohr magneton, and g, ~ 2 is the Lande g-factor in Si.
At T =100mK and B = 2 tesla (2upB = 0.23meV), the
electrons will be completely spin-polarized:

ne
1~ exp[—2upB/(kpT)] ~ 2.14 x 1072, (4)
n
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where n° represents the donor electron number density.
These conditions however do not fully polarize the nu-
clear spins:

nn
n—i’l ~ exp|—2gnpnB/(kpT)] ~ 0.98, (5)
?

where n™ stands for the donor nuclear number density,
the nuclear g-factor g, = 1.13 for 3'P, p, is the nu-
clear magneton and 2g,u, B =~ 0.00014 meV. The polar-
izations of the nuclear spins are instead determined by
interactions with the polarized electrons.

In Table I, we list some relevant and typical energy
scales in mini electron Volts (meV) and their corre-
sponding frequencies in Hertzes (Hz) for the silicon-based
electron-mediated nuclear spin quantum computer.

IV. SINGLE-QUBIT SYSTEM

The effective low-energy and low-temperature Hamil-
tonian for a 3!'P nuclear spin-electron system in Si with
B || z can be written as

Hen = upBol — gnpnBo, + Ac® - a”, (6)

where e and n appearing in the superscripts and sub-
scripts represent quantities for the electron and the nu-
cleus respectively, o’s are Pauli matrices, and A =
8TuBgnitn|¥(0)]?/3 is the contact hyperfine interaction
energy with |¥(0)|? the probability density of the electron
wave function evaluated at the position of the nucleus.
Direct diagonization of this simple Hamiltonian Eq. (6)
gives the eigen energies, with each associated eigen state
as a subscript (e.g., Ej,) stands for the energy of the
state |en)), as follows:

Ejroy = pB — gapin B + A, (7)
Eajttysyli0y = V(BB + gninB)? + (24)2 — A, (8)
9)
)

E_yit1yralioy = =V (BB + gnpin B)® + (24)2 — A, (9
E|J,1) = _,UBB + gn,unB + A (10

Here the eigen states are written in electron of and nu-
clear o basis. For example, |en) = | | 0) represents the
electron spin down (}) and nuclear spin up (0) state. The
coefficients o and ~y are:



|| energy meV Hz ||
indirect conduction-valence energy band gap E, of Si 1120 2.7x107
electron ground state energy of *'P donor in Si -45.5 1.1x10™
electron 1st excited state energy of *!P donor in Si -33.9 8.2x1012
2nd electron binding energy in D~ state of *'P donor in Si 1.7 4.1x10™
temperature energy scale kgT at T = 100 mK 0.0086 2.1x10°
electron Zeeman energy ugB at B = 2T 0.116 2.8x10™
nuclear Zeeman energy g,punB at B = 2T 7.1x10°° 1.7x107
*typical hyperfine interaction A 1.2x107* 2.9x107
*typical nuclear resonance energy hva for single qubit 3.8x1071 9.3x107
nuclear full width at half maxima 4g, ptn Bac at Bee = 10 °T 1.4x10°7 3.4x10*
*typical electron exchange energy 4.J 0.124 3.0x10™
*typical nuclear exchange energy hvs 3.1x1077 7.5x10%

TABLE I. Relevant energy scales for the silicon-based electron-mediated nuclear spin quantum computer proposed by Kane.
Here * represents that these energies can be controlled externally by varying the A-gate and J-gate voltages.

a= {1 + (A - \/1+—A2)2] 71/2, (11)
y= {1 + (A + \/1+—A2)2] o : (12)

where A = (upB + gnunB)/(2A). We can see that if A
is very large, which is usually the case for the proposed
quantum computer, then « — 1 and v — 0.

For the sake of the more complicated two-qubit Hamil-
tonian encountered later, let us nevertheless calculate the
energy levels perturbatively, by treating the hyperfine in-
teraction, A, as a perturbation. The standard perturba-
tion theory gives the first and second order energy shifts

to the state |n) with energy level EY as follows:

B = (f#In), (13)
g = 3 ) onl ) "

m#n E7(L0) - ET(’[L))
where H' is the Hamiltonian of the perturbation. The
expectation values of H' = Ao® - o™ with respect to the
unperturbed states (| 10), | } 1), | 1 1), and | | 0)) give
the first order energy shifts of A to | 1 0) and | | 1) states,
and energy shifts of —A to | 1 1) and | | 0) states. To
obtain the second-order energy shift for a state, we should
find all non-zero matrix elements of H' connected to that
state. The only non-zero matrix elements relevant for the
second order perturbation energy shift are (1 1|H’'| | 0) =
(4 O|H'| T 1) = 2A. Therefore by means of Eq. (14), the
energy levels to the second order in A are given by:
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If the electron is in its spin-down polarized ground state,
the frequency separation between the two associated en-
ergy levels, Eq. (17) and (18), is found to be

2

2A
hva =2gppnB + 2A + —,

e (19)

where the nuclear Zeeman energy g,u,B has been ne-
glected with respect to the electron Zeeman energy upB
in the denominator of the last term of Eq. (19). Egs.
(15) — (19) can also be obtained to the second order in A
by directly expanding the exact eigen energies, Eqgs. (7)
— (10), up to the second power of A~!. In addition, the
coefficients of the states, also by direct expansion of Egs.
(11) and (12) to the first power of A=! and by using the
relation a® + v? = 1, have the approximate values:

1
2
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7= BB+ gnuitnB (21)

This result can be obtained by calculating the first-order
wave function shift using the perturbation theory. In
a Si3!'P system, 24/h = 58MHz, and A > gnu,B for
B < 3.5T.

Applying the A-gate voltage (on the top of the donor
atom, see Fig. 7) shifts electron wave function envelope
away from the nucleus and reduces the hyperfine inter-
action. To get an order of magnitude estimate for the
size of this shift, we assume a linear decrease of A with
increasing voltage, i.e., A —» A —nV with a tuning pa-
rameter n = 30 MHz/V. The corresponding estimated
nuclear resonance frequency change, following from Eq.
(19), as a function of applied voltage with the assumed
linear tuning parameter is shown in Fig. 2. This crude
estimate gives roughly the nuclear resonance frequency
change for the curve shown in Fig. 2 in Kane’s paper’.
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FIG. 2. Estimate of nuclear resonance frequency, v, as a
function of applied A-gate voltage with the assumed linear
tuning parameter n = 30 MHz/V.

V. SINGLE-QUBIT OPERATIONS: NUCLEAR
MAGNETIC RESONANCE

Since the nuclear resonance frequency is controllable
externally, the nuclear spins can be selectively brought
into resonance with a globally applied a.c. magnetic field,
By, allowing arbitrary rotations to be performed on each
nuclear spin. Let us discuss briefly this nuclear mag-
netic resonance (NMR) technique. For simplicity, we
consider first the Hamiltonian for a free nuclear spin-
% system with a uniform magnetic field, B, applied in
the z-direction, and an a.c. magnetic field rotating in the
xy-plane:

HNMR = —gntinBoZ — gnpinBacloy cos(wt) + o, sin(wt)].

(22)

An exact solution for this problem is available. Let P,
and Pjgy be the probabilities of finding the nuclear spin in
the down (|1)) and up (]0)) states respectively. If initially,
at t = 0, Py = 1 and Pj;y = 0, then at time ¢, the
probability for being found in each of the two states is
given by the so-called Rabi’s formula:

_ (gn,UnBaC/h)2
P\l) (t) B (gnllanac/h)2 + (w - w10)2/4
x sin? <(g"“gf““)2 C _:’10)2> 2 t] , (23)
Py(t) =1 - Pyy(t), (24)
where
wio = (Ejy — Ejo))/h = 2gnpnB/N (25)

is the angular frequency separation between the two
states, |1)| and 0), connected by the B,., which is equal
to the nuclear spin-precession frequency for the B # 0,
B,. = 0 problem. The amplitude of the oscillatory spin-
flop probability Ppy(t) is particularly large when the fre-
quency of the rotating magnetic field coincides with the
frequency separation between the two states:

W = Wres = W1gQ- (26)
Eq. (26) is therefore known as the resonance condition.
The full width at half maxima of the amplitude in fre-
quency, (Aw)r, is given by

(Aw)r = 4gnpinBac/h. (27)

It is worth noting that the weaker the a.c. magnetic field
B,., the narrower the resonance profile. Next we describe
briefly what happens to the corresponding state vector,
[t)(t)}), at resonance w = wip. If the time-evolution state
is written as:

() = a(t)|0) +b(#)[1),

the time-dependent coefficients at resonance, w = wig,
can be obtained as:

(28)

a(t) = exp(—iwt) cos (MRBMQ , (29)
b(t) = i exp(iwt) sin (%Bwt) . (30)

A (gnpinBactr)/h = 7 pulse then causes the expectation
value of the magnetization vector to undergo a rotation
and return to its initial value.

In practice, a rotating magnetic field may be difficult to
produce experimentally. A horizontally oscillating mag-
netic field linearly polarized along, for example, in the
z-direction is usually applied. This oscillating magnetic
field can be decomposed into a counterclockwise rotating
field component and a clockwise component as follows:

Bac A A .
B, xcos(wt) = Y [X cos(wt) + ¥ sin(wt)]

ac

B
2

[X cos(wt) — ¥ sin(wt)]. (31)
The effect of the clockwise component can be obtained
simply by reversing the sign of w for the counterclock-
wise component. Suppose the resonance condition is
met for the counterclockwise component, w = wyg =
2gninB/h. The experimental operation conditions for
magnetic fields (B = 2T and B,. = 1073T), i.e.,

B
2 o5x107tx 1
B % <5

(32)
imply that the full width at half maxima in frequency,
Eq. (27), of the probability amplitude, Eq. (23), is much
smaller than the resonance frequency:
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FIG. 3. Exchange frequency 4.J(r)/h as a function of sep-
aration distance between donors.

(Aw)r € W = Wres = Wio- (33)

Since the effect of the clockwise component amounts to
w — —w, which is far outside the resonance peak, the am-
plitude in this case becomes small in magnitude as well
as very rapidly oscillating. As a result, whenever the
resonance condition is met for the counterclockwise com-
ponent, the effect of the clockwise component becomes
completely negligible. Hence, for the linearly polarized
oscillating magnetic field, Eq. (31), if |w| = |wres|, one of
the two rotating field components has the right sense of
rotation.

As to the case for the single-qubit rotational opera-
tions, if the resonance frequency is tuned to the separa-
tion frequency between | | 1) and | | 0) states, given by
Eq. (19), and the temperature is low enough, we may, to
an approximation, consider only the polarized electron
ground state subspace. In this case, the above NMR de-
scription for a free nuclear spin—% system can be well
applied to the single-qubit system with some suitable
changes of parameters.

VI. TWO-QUBIT SYSTEM

The effective Hamiltonian for two coupled donor nu-
clear spin-electron systems, valid at energy scales small
compared to the donor-electron binding energy, is

Hcoup - /J/B-BO;6 - gn/J/nBU;n + ,UBnge - gn/J/ntgn
+A10' o'+ Ayo? o™ + Jo'C - 0%, (34)

where A; and A, are the hyperfine interaction energies
of the respective nucleus-electron systems and 4.J, the
exchange energy, depends on the overlap of the electron
wave functions. In order for exchange coupling between

the electron spins to be significant, the separation be-
tween donors should not be too large. As shall be seen be-
low, significant coupling between nuclei will occur when
4J =~ 2upB. This condition sets an approximately nec-
essary separation between donors. To get an estimate
about the necessary separation, let us use the formula
for exchange interaction, derived for well separated H-H
atoms but with values appropriate for *'P donors in Si:

2 5/2 2
1.6 e* <L*> exp <——f> , (35)
eay \ay ay

where r is the distance between donors. This exchange
energy with the static dielectric constant e = 11.7 and
donor Bohr radius ap ~ 30A, employed before, is plot-
ted in Fig. 3. One can see that when 4J =~ 2upB =
56GHZ, the separation between donors is roughly located
in 100 — 200A. Since the value of J depends on the elec-
tron wave function overlap, it can be varied by an J-gate
positioned between the donors (see Fig. 7). The actual
necessary separation between donors may be thus a little
larger than 200A. In practice, the exchange interaction
is complicated in Si because the contribution from each
valley interferes, leading to oscillatory behavior® of J(r).

Next we describe the energy levels of Hamiltonian for
two coupled donor nuclear spin-electron systems, Eq.
(34), as a function of J. Let us first consider only the
electrons. If B = 0, only the exchange interaction left in
the Hamiltonian and it can be rewritten as:

4.J(r) ~

Jo'¢ 0% =4JS,, - Sy =2J(S* - S}, - S3,)
J : S=1
= { —3J : §=0" (36)

where S;., individual electron spin—% operator, satisfies
S? = Sie(Sie +1) = 3/4, S is the total spin operator of
the two electrons and S? has eigenvalue S(S+1) in states
of total spin S. The exchange interaction lowers the total
electron spin S = 0 singlet (| 14 — }1))/V/2 energy with
respect to the S = 1 triplet, | 11), (| 1} + I1))/V2,
| }1), by the triplet-singlet splitting 4.J, i.e., By = —3J
and E; = J. Suppose now the B field is turned on, the
magnetic field causes the Zeeman splitting of £2upB on
| 1) and | L)) states but has no effect on the states (| 4
+ |1))/V/2 since their z-components of the total two-
electron spins are zeros. If J is adiabatically increased,
the energy levels of | |]) and (| 14 — |1))/v/2 states
cross each other at the point where the triplet-singlet
splitting is equal to the Zeeman splitting 4J = 2upB,
and the (| 1/ — |1))/V2 state has the lowest energy
when J > upB/2 (see Fig. 4).

Now let us add back the nuclear spins to the Hamil-
tonian. Generally the nuclear energy splitting is much
smaller than electron one by a factor of about ug/p, ~
1800. It is hence hard to draw the whole electron
and nuclear energy levels to the same scale. Neverthe-
less in the case when nuclear spins are included, each
widely spaced electron energy level will become four
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FIG. 4. Energy levels of two-qubit system as a function of
exchange energy J.

much closer electron-nuclear energy levels and there are
sixteen electron-nuclear spin states in total (see Fig. 4).
In a magnetic field, the | ||) state will be the electron
ground state if kpT < J < upB/2. In the polarized | |)
electron states, the energies of the nuclear states can be
calculated to the second order in A using the perturba-
tion theory. We diagonalize the unperturbed Hamilto-
nian and then find the non-zero matrix elements of the
perturbation,

H =A10' o'+ Ayo™ - 7", (37)

with respect to the unperturbed eigen states. Let us
introduce the following notations for the electron and
nuclear states for abbreviation:

) = 5 | 1+ 1) (38)
oc) = 5 | 14 1), (39)
sw) = =10+ 1), (40)
lay) = % 110 — 01). (41)

We focus on the nuclear spin energy levels in the spin-
polarized electron ground states. These unperturbed en-
ergy levels and states in are:

B\ 1y = —218B + 2gnnB + J, (42)
B\ ey = —2uBB + J, (43)
B\ 0y =—2uB+J, (44)

I(J,J),)\00> —2ugB — 29 pnB + J. (45)

For simplicity, let us consider the case where A; = Ay =
Ain H', Eq. (37). To obtain the first-order energy shift,

it is sufficient to evaluate the expectation value of H' with
respect to the unperturbed states. The first-order energy
shifts of | JJ)|11) and | J4}|00) are 24 and —2A respec-
tively. The | Jl)|sn) and | |{)|a,) states, however, re-
main degenerate since there is no first-order energy shift
to both of them. The only non-zero matrix elements con-
nected to the above four electron-nuclear spin states by
H', Eq. (37), relevant to the second-order energy shifts
are:

(sel(LLH'] L) sn) = 24, (46)
(ae| (L[] L) an) = —2A, (47)
(sel(sn|H'] 11)]00) = (48)
(ael(an|H'] 11)]00) = (49)

Their complex conjugates, which are equal to themselves,
are not shown here. Other relevant unperturbed energy
levels associated with states in Eq. (46)—(49) are given
by:

\s )\11) = 2gnpn B + J, (50)
By = 2gnpin B — 3, (51)
By =7 (52)
B, =3, (53)

Using the second-order energy shift formula, Eq. (14), we
find that the electron-nuclear spin energy levels in the
electron spin-polarized | ||} states, to the second order
in A, are:

(2) _

Eumn) = —2upB 4 2g,unB + J + 24, (54)
242

E? = _9upB4+J-— —

sy = T2BB T = (55)

242

WD) an) = —21BB +J mB t o B2 (56)

B )0y = ~215B = 2gapn B + J - 24
242 242
- - . (57)
uBB + gnpn B uB + gpunB —2J

The | L{}|a,) state is lowered in energy with respect to
| +0)]sn) by:

1 1
hvy = 242 — . 58
" (uBB—w uBB> (58)

The | JJ)|11) state is above the | |])|s,) state and the
| 11)]00) state below the | |l)|a,) state by an energy
hva, Eq. (19). For the Si:3'P system at B = 2T and
for 4J/h = 30GHz, Eq. (58) yields the effective nuclear
exchange frequency v; =~ 75 KHz. This nuclear spin ex-
change frequency approximates the rate at which binary
operations can be performed on the computer (see the
discussion in Sec. X).



VII. CONTROLLED-NOT OPERATION

The controlled-NOT operation (conditional rotation of
the target spin by 180°) can be realized? by the combined
applications of B,. and adiabatic variations in J and
AA = A; — As, in which the gate biases are varied slowly.
The sequence of the adiabatic steps performed and the
associated evolution of nuclear spin states and energy
levels for the controlled-NOT operation are schematically
illustrated in Fig. 5. Issues regarding adiabatic processes,
such as adiabatic switching times and pulse shapes are
discussed in Sec. X.

At t = tp, indicated in Fig. 5 , the two spin systems
are uncoupled (J=0) and AA = 0 so that |10) and |01)
are degenerate. At t;, AA >0 (A; > Ay) breaks this de-
generacy (]10) above |01)) and distinguishes the control
qubit from the target qubit. At t5, J is turned on and in
the case when AA > hvy, the eigenstates do not evolve
away from themselves much, i.e., they roughly remain in
the same states as they were. When AA is slowly de-
creased to zero with .J on, the |10) state evolves adiabat-
ically into |s,) state and |01) into |ay). The energy split-
ting between the central levels at ¢35 then reduce to the
effective nuclear spin exchange frequency hv; between
|sn) and |a,) states. At t4, a linear polarized magnetic
field B,. is applied, for example, in the z-direction reso-
nant with the |11) — |s,,) gap. At first sight, B,. seems
to be also resonant with the |00) — |a,) gap; however,
to the first order in time-dependent perturbation theory,
the matrix element of this transition is zero since the
nuclear singlet state is not coupled to the other triplet
states by the perturbation:

Gnpin (01" + 02™) By cos(wt). (59)

By is left on until ¢5, when it has transformed |11} into
|sn) and vice versa. The [s,) and |a,) states are then
adiabatically transformed back into [10) and |01) in a re-
verse of the sequence of steps performed at the beginning
of the operation.

We can see that the qubits whose energy levels vary
during the adiabatic procedure are unchanged. However,
the states are inverted if and only if the control qubit
(first qubit) is |1). Therefore the controlled-NOT opera-
tion has been performed.

VIII. SPIN MEASUREMENTS

The computations of the proposed quantum computer
are done when J < upB/2 where the electrons are
fully polarized. Measurements are, however, made when
J > ppB/2 where electron |a.) states have the lowest
energies (Fig. 4). As the electron levels cross (see Fig.
4), the | {)) and |a.) states are coupled by hyperfine in-
teractions, Eq. (37), with the nuclei. The no-level cross-
ing theorem in quantum mechanics states that a pair
of energy levels connected by perturbation do not cross
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FIG. 5. The controlled-NOT operation realized by the
combined applications of B,. and adiabatic variations in
J and AA = A; — A,. (a) The sequence of controls
are illustrated schematically. All energy scales are in units
of nuclear Zeeman energy: g¢gnunB. (b) The correspond-
ing evolution of the nuclear spin states and energy lev-
els are presented. Throughout the controlled-NOT oper-
ation J < pupB/2. As a consequence, the electron spin
state of the system is always in polarized | ||) state and
only the associated nuclear spin states are explicitly shown.
Note that the energy levels are presented at the same scale
but in different energy intervals, and they are obtained by
keeping A> =~ 1.683 ghounB =~ 0.001 upB fixed and varying
Al = Ar + AA.
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A1 = Az ~ 0.001 ,U,BB.

vicinity of J = upB/2 with

as the strength of the perturbation is varied. We see
from Eq. (46) — (49) that for the lowest eight energy
states, only two pairs of states are connected by hyper-
fine interactions, Eq. (37), as the exchange energy J is
varied. The first pair of states consists of | [l)|a,) and
|ae)|11), and the members of the other pair are | ||)|00)
and |a.)|a,) states. The coupled states in each pair hy-
bridize and their energy levels repel each other, leading
to anti-crossing behavior in the vicinity of J = upB/2,
shown in Fig. 6. Other energy levels, however, do cross
each other since no coupling exists between them. Thus
during an adiabatic increase in J (from J < ppB/2 to
J > ppB/2), the lowest eight states evolve, as illustrated
in Fig. 6, as follows:

|ae>|11> — |¢i>|an>:
lac)|an) — | 11)]00),
i e
Qe — Qe s
| L[1T) — | 4)[11), (60)
|10 sn) —> [ 1)Ism),
| 1) an) — |ac)|11),
|i¢>|00> — |ae>|an>-

We now describe how the polarization of a single 3'P
nuclear spin can be measured using the idea of adiabatic
evolution of states. The idea is to transfer the detec-
tion of the nuclear spin to the electrons. Suppose that at
J =0, Ay > A,, the energy levels of nuclear spin states
in electron spin ground state, | |]), are in the following
order with |10) above |01) (]10) and |01) are degenerate
when 4; = Ap): |11), |10), |01), and |00). This proce-
dure distinguishes energy state of nuclear spin #1 from
that of nuclear spin #2. If now .J is turned on and in-
creased adiabatically (but still J < ppB/2) and at the

same time AA = A; — A, is turned off adiabatically, then
the |10) and |01) states evolve gradually into |s,) and
|an) respectively. The above few steps of operations are
similar to the first few steps performed in the controlled-
NOT procedure described in Sec. VII. If J is increased
further adiabatically from J < upB/2 to J > upB/2,
according to Fig. 6 or Eq. (60), the system with nuclear
spin state in either |11) or |s,) will remain in the same
electron-nuclear state. On the other hand, the electron
spin state of the system with nuclear spin state in either
|00) or |a,) will evolve into the |a.) state. Thus the ini-
tial orientation of nuclear spin #1 alone will determine
what electron spin state the system evolves into. To be
more evident, if initially the system is in the electron spin
polarized | ]]) state and the orientation of nuclear spin
#1 is down, i.e., in |1) state, by means of the above se-
quence of adiabatic steps, no matter what the orientation
of the second nuclear spin has, the system will remain in
the same electron spin state | ||). However, if initially
nuclear spin #1 is in |0) state, the electron spin state of
the system will evolve into |a.) state. We summarize the
sequence of steps performed and the associated adiabatic
evolution of states in the following:

J=0, A1 > Ay 0<J<EBE AA> huy

[ {11y — | L9)[11)

| H)[10)  — | 11)]10)

[hon)  — | 14)]01)

| L)[00)  — | 14)]00)

0<J< BB A= 4, J>EBE 4 = A,

— | L[11) — LY,
— | W) an) —  lae)[11),
— | 44)]00) — |ae}lan).

From Eq. (61), if the final electron spin states, | ||) and
|ae), of the two neighboring donor atom system are, by
some means, distinguishable from each other, the initial
orientation of nuclear spin #1 can thus be determined.
A method to detect the nuclear and electron spin states
using electronic means is shown in Fig. 7. The basic
idea is to turn the spin measurement into a charge mea-
surement. Suppose a two-qubit quantum gate operation
was just done. These two qubits located right below the
A gates in Fig. 7, have no coupling between them and
are now ready to be read out (for the purpose of quan-
tum computing, the qubits must be coupled only for the
short time of switching, while most of time there is to
be no coupling between them). Let us call the other two
donor atoms located below the single-electron transistors
(SETs) and on the left and right of the two qubits in Fig.
7 the L-donor and R-donor atoms respectively. For the
purpose of nuclear spin readout, we take the L-donor and
the neighboring first qubit as a system, and the second
qubit and its neighboring R-donor atom as the other sys-
tem. In order to investigate the difference in spin detec-
tion between the two possible values of nuclear spin, we



assume that the nuclear spin of one of the two qubits, say
the first qubit, is in |1) state and the nuclear spin of the
other qubit, say the second qubit, is in |0) state. After the
sequence of adiabatic steps stated in Eq. (61) (which can
be performed simultaneously for both of the systems),
the electron state of the system consisting of the L-donor
and first qubit will remain in | ||} state, and the electron
state of the other system containing the second qubit and
the R-donor atom will evolve into |a.) state, illustrated
schematically in Fig. 7 (b). The 3'P donor in Si has a sta-
ble two-electron state (D~ state) with a second electron
binding energy of 1.7meV, but only if the relative spin
of the two electrons is a singlet. Therefore even if the A
gates above the two qubits are biased appropriately, elec-
tron charge motion between the donors will only occur if
the electrons are in the singlet |a.) state. For the above
assumed initial values for the two qubits, only the elec-
tron on the second qubit (initially in |0) state) will tunnel
into R-donor atom forming a D~ state. As a result, a
perturbation on the conductance of the highly charge-
sensitive SET above the R-donor atom will be observed.
On the other hand, no change on the conductance of the
SET above the L-donor atom is expected. To sum up,
the job of measuring spin is converted into a job of mea-
suring charge movement of electron tunneling into D~
state. If a perturbation signal is observed in the SET,
the nuclear spin of the measured qubit is in |0); if the
SET does not detect any change in tunneling current,
then the measured qubit is in |1).

IX. MEASUREMENT PROCESS AND
CONTINUOUS OBSERVATION

In the previous section we saw that the measurement
reduces to the problem of monitoring the conductance of
the SET while an electron tries to tunnel from the 2nd-
qubit to the D~ state of the R-donor. Like all measure-
ment processes the SET induces a non-unitary compo-
nent to the tunneling dynamics. The tunneling system
(from |a.) < |D~) finds itself continuously monitored,
and is thus coupled to the irreversible processes in the
SET. This kind of system is analyzed in the paper on
SET measurements on two couple quantum dots®. When
one level of a two level system is continuously monitored,
attention must be paid to the relative rates of coherent
and incoherent processes. In fact if one level is moni-
tored too well, the coherent tunneling into that level can
be suppressed entirely, a feature known as the quantum
watchdog effect.

The idea of the watchdog effect is quite simple. To
see how it works consider a two level system with states
[0), |1) coupled by a tunnel coupling rate Q. If the
system starts in the state |0), then in time ¢ it evolves to
the sate

[t(t)y = cos(§2¢)|0) + sin(Q¢t)|1) (62)
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FIG. 7. Schematic illustration of the two-qubit and spin
measurement system. (a) The two qubits are initially in nu-
clear spin |1) and |0) states respectively and all the donor
electrons are all in the spin | |) states. (b) After the sequence
of adiabatic process for spin readout stated in Eq. (61), the
electron state of the system consisting of the L-donor and first
qubit evolves into | ||} state, while the electron state of the
other system containing the second qubit and the R-donor
atom evolves into |a.) state. (c) By applying appropriate
bias of the A gate voltage above the two qubits, only the elec-
trons in |a.) state in the system consisting of the 2nd qubit
and R-donor atom can make transitions into a state in which
the two electrons are bound to the same donor (D~ state).
The electron current during the transition is measured using
highly charge-sensitive SET, enable the underlying spin states
of the electron and nuclei to be determined.



Suppose now that a fixed times an instantaneous, per-
fectly accurate readout (projective readout) is made of
state |1), and that these occur with a frequency ~y. The
time between successive readouts is then T' = 27 /~. The
result of each readout is 0 if the system is not found in
state |1}, otherwise the result is 1. If the result is O then
consistency demands that immediately after this read-
out the system state is |0). Suppose now that the system
starts in state |0). The probability that we get the null
result at the first readout is

218y

(1)(T) = cos?(QT) (63)
which is close to unity if the measurements occur more
rapidly then the tunneling period. The probability that
we get a null result for the first N readouts up to time
t = NT is then

PN)(NT) = cos*¥(QT) (64)
We now take a continuous limit in which 77 — 0 and
N — oo such that ¢ = NT is finite. The probability that
at time ¢ we have never seen the system in state |1) that
is we have only seen null results) is then just

0272
Po(t) & (1= ——)"
NTQ?T
~ (1- T)
~ e—Q2tT/2
-1 asT —0

The continuous observations have completely over-
whelmed the coherent tunneling so that the system
NEVER enters the state |1). This is because, for short
times, the coherent process goes as t?> while the incoher-
ent measurement process goes as t. The lesson is that,
for continuously monitored tunneling systems, we must
treat carefully the nature of the irreversible coupling be-
tween the system and the apparatus, and be mindful of
the time scales. Such an analysis is undertaken in Ref.”.
In the case of the SET there is an additional problem
associated with the background current though the SET
which is shot-noise limited. Even when the SET is not
fully on, this background current will decohere the sys-
tem as it tries to tunnel between the two states. Form the
experimental point of view, the effect of the background
current is to render the two possible output current states
difficult to distinguish and thus a reliable determination
of the position of the electron is difficult to make.

X. ADIABATIC SWITCHING

In the proposed quantum gate and measurement op-
erations, the exchange J and hyperfine interaction A are
switched on and off adiabatically by the external electric
J and A gates respectively. We discuss in this section
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some issues concerning adiabatic switchings. In a prob-
lem with a slowly and continuously varying Hamiltonian
H (t), the adiabatic theorem in quantum mechanics states
that in the limit of infinitely slow or adiabatic passage, if
the system is initially in a eigenstate of H(0), it will, at
time ¢, have passed into the eigenstate of H(t) that de-
rives from it by continuity. In other words, the variation
is so slow that the system is able to respond as if the time
evolution energy states are determined by the instanta-
neous eigenstate of the Hamiltonian. Thus for the adia-
batic processes to be very accurate, the gate biases have
to be swept very slowly, i.e., adiabatic switching time
should be as long as possible (but must smaller than the
decoherence time). However, for the purpose of quantum
computing, the rule for the switching speed is the faster
the better as long as the errors introduced in the pre-
scribed manipulations are tolerable by error correction.
This issue of adiabaticity has been discussed for quantum
gate based on electron spins in coupled quantum dots’.
We describe below some adiabatic conditions relevant to
the silicon-based nuclear spin quantum computer.

The important question to be answered is the follow-
ing: how slow does the change in the Hamiltonian or in
the electric voltage in A and J gates, have to be to allow
the adiabatic process to be valid. Adiabatic switchings
via an external control field v(t) (electric voltage in A or
J gates, for example) require at least

o(t)

v(t)

where de is a characteristic energy scale of the prob-
lem. Since the qubits are coupled within the switch-
ing time, 7, a typical frequency scale during switch-
ing is then given by the nuclear exchange energy vy,
(58), for Kane’s nuclear spin system in Si while it is the
electron exchange 4.J/h for electron spin system in cou-
pled quantum dots”. Adiabaticity requires that many
coherent oscillations have to take place between qubits
while external control parameters v(t) (electric voltage
in A or J gates, for example) is being changed, i.e.,
1/7s & |0(t)/v(t)] < vy. This nuclear spin exchange
frequency v; hence approximates the rate at which bi-
nary operations can be performed on the computer. For
vy =~ T7T5KHz, we see that 75 should not be smaller than
about 14us.

Certain pulse shapes® may not be suitable for adia-
batic switching. Switching pulses of rectangular shape,
for example, are excluded by the adiabaticity require-
ment. The Fourier transform, v(w), for a rectangular
pulse v(t) decays only as 1/w, and in this case many
excitations into higher energy levels will occur. For a
Gaussian pulse shape, we would get |9(t)/v(t)| o« t and
some cutting of the long-time tails is required in order
to satisfy adiabaticity for all times. An adiabatic pulse
shape of amplitude vy is, for example, given by

‘ de

v(t) = vosech(t/At), (66)



where At = 7,/ gives the width of the pulse and 3 is
chosen such that v(7s)/vg becomes vanishingly small. In
this case we have

%‘:é‘tanh (&)\%:Tﬁ (67)

Thus for adiabaticity we need to choose 75 such that
B/7s < de/h. The Fourier transform,

v(w) = vom At sech(rwAt), (68)

has the same shape as v(t) but with a width of 2/(wAt)
and it decays exponentially in frequency w.

The actual pulse shape of the switching may not be
very relevant for the quantum gate operation since the
only parameter which matters is the integrated pulse
shape, [;* vs(v(t))dt for example. Other more efficient
operations than the adiabatic approaches are desired.

XI. CONCLUSION

We have exploited the silicon-based electron-mediated
nuclear spin quantum computer proposed by Kane. Es-
pecially, the single- and two-qubit energy levels and eigen
states as well as their operations and measurements are
discussed in details. Issues regarding adiabatic proce-
dures, such as adiabatic switching times and pulse shapes
are also briefly discussed.
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