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The problem of coherence/incoherence of electron tunneling between one-dimensional Luttinger
liquids coupled by a small interchain single-particle tunneling amplitude ¢, is studied in terms of
Schwinger-Keldysh double-time or closed-time path formalism. Using an unconventional functional
bosonization procedure, we represent the one-dimensional Luttinger Liquid in terms of a “system”
of free electrons, and an “environment” of fluctuating bosonic phases. The coupling between the
system and environment is introduced by the interchain single-particle tunneling of the amplitude
t,. We find that the conditions for incoherence and irrelevance (in renormalization-group sense) of
t1 coincide, and thus the relevant but incoherent regime is not possible.
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I. INTRODUCTION

The problem of one-dimensional (1D) Luttinger
liquids' % coupled by a small interchain single-particle
tunneling amplitude ¢; attracted a great deal of atten-
tion in recent years''™%. It was shown®' that, unless
intrachain interaction is extraordinarily strong, ¢, is a
relevant perturbation in the renormalization-group sense.
Then Clarke, Strong, and Anderson32:33 put forward the
hypothesis that, while being relevant, the single-particle
interchain hopping is incoherent. Thus, the transverse
electron motion is not quantum, but rather classical, so
there is no coherent transverse energy band. The math-
ematical foundation of their theory is based on the anal-
ogy with the so-called two-level model®®36, The latter
model consists of a quantum particle that has two de-
generate states connected by a matrix element A. The
particle interacts with an “environment”, a thermal bath
of oscillators with distributed frequencies. If initially the
particle is in one of the two states, then, in the absence of
interaction with the environment, the probability to find
the particle in the other state oscillates in time, accord-
ing to elementary quantum mechanics. When interaction
with the environment is sufficiently strong, this probabil-
ity does not oscillate, but changes in time exponentially,
saturating at the probability 1/2. This behavior is called
incoherent, because it corresponds to a classical, rather
than quantum-mechanical, coupling of the two states. At
a stronger interaction with the environment, the particle
gets indefinitely localized in the initial state, and does
not make a transition to the other state at all. In this
regime, A is irrelevant3”-38. In the two-level model, there
is a finite range of the particle-environment interaction
strength where A is relevant but incoherent. Clarke,
Strong, and Anderson3233 conjectured that such a sit-
uation may take place also when t; (interchain single-
particle tunneling amplitude) couples two (or more) 1D
Luttinger-liquid chains.

While this is certainly a very interesting suggestion, it
raises a number of questions. First, the two-level system

is a zero-dimensional system, where the particle evolves
only in time. On the other hand, in a 1D Luttinger liquid,
electrons also move in space along the chains. The effect
of different dimensionality has to be taken into account
and may change the results. Second, in the standard ap-
proach to decoherence, it is necessary to identify the “sys-
tem”, the degree of freedom whose evolution we follow,
and the “environment”, the other degrees of freedom that
we do not follow. Tracing over the environmental degrees
of freedom causes decoherence. The distinction between
the “system” and “environment” is clear for the two-level
model, but is not obvious in the case of coupled Luttinger
liquids. Third, the issue of coherence-decoherence can-
not be decided by studying only the second-order term
in ¢, . It is necessary to examine the general structure of
expansion in ¢; to high orders.

In this paper, we offer a systematic study of these is-
sues. To address the second question, we utilize a some-
what unconventional form of 1D bosonization. In this ap-
proach, the noninteracting electrons represent the “sys-
tem”, the fluctuating bosonic phase fields represent the
“environment” , and the coupling between the system and
environment is introduced by the interchain single par-
ticle tunneling of amplitude t;. To address the ques-
tion of interchain hopping coherence, we use perturba-
tive expansion in powers of ¢ within the double-time
functional integral, also known as the Schwinger-Keldysh
closed-time-path (CTP) formalism®’. Our criterion of
coherence-incoherence is formulated in exactly the same
way as for the two-level model®>:3®, except there is no
spatial coordinate z in latter case (a discussion for the
two-level model is given in Appendix C). We find the
result that the conditions for incoherence and irrelevance
of t, of coupled Luttinger liquids coincide, and thus the
relevant but incoherent regime is not possible.

The outline of this paper is as follows. In Sec. II, we
present, our functional bosonization approach for the 1D
Luttinger liquid. The anomalous power-law correlation
functions of the 1D Luttinger liquid can be reproduced
exactly in this approach. In Sec. III, we briefly discuss
the basic idea of the Schwinger-Keldysh CTP formalism.



In Sec. IV we carry out the perturbative expansion in
powers of ¢ | within the CTP and discuss the condition of
coherent-incoherent transition for the coupled Luttinger
liquids. A conclusion is given in Sec. V. The explicit eval-
uation of the chiral Jacobian (due to the chiral transfor-
mation made in our functional bosonization) and detailed
calculations of 1D Luttinger correlation functions in our
approach are given in Appendix A and B respectively.
We discuss how our criterion of coherence-incoherence
applies to the two-level model in Appendix C.

II. FUNCTIONAL BOSONIZATION OF 1D
LUTTINGER LIQUID

We now present our functional bosonization approach
for the 1D Luttinger liquid.. Our functional approach
consists of three major steps: the Hubbard-Stratonovich
transformation, the chiral transformation, and the inclu-
sion of chiral Jacobian (anomaly). Bosonization based
on functional integration, first discussed by Fogedby*°
and later by Lee and Chen*!' for the 1D Lutinger liquid,
has been recently generalized and developed by Kopi-
etz, Schonhammer, Hermisson and Castilla??, to bosonize
interacting fermions in arbitrary dimensions. The dif-
ference between our functional bosonization and previ-
ous approaches is that instead of transforming interact-
ing electrons to an entirely bosonic representation, af-
ter a Hubbard-Stratonovich transformation*® we make
a chiral transformation on the electron field, which al-
lows us to decoupled the Lagrangian (action) into a sys-
tem of free fermions and an environment of the fluctuat-
ing bosonic phases. The 1D Luttinger-liquid correlation
functions with anomalous power-law behavior can be ob-
tained straightforwardly and reproduced exactly in our
approach.

For simplicity, we restrict ourselves to the zero temper-
ature spin—% case but with only spin-independent forward
scattering. In the terminology of g-ology>” 1° | only go
and g4 “charge sector” interactions are included. The
Hamiltonian for this 1D Luttinger liquid model could be
written as
H= / dx [Zz/;
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where ] ,(2,t), 1(z,)q,, are fermion creation and an-
nihilation fields, ¢ =1,] is the spin index, a = =+ rep-
resents two branches of the dispersion varying linearly
[ea(k) = ahwpk] about the two Fermi points +kp, and
energy is counted from the Fermi level. The density op-
erator p,(x,t) is defined as

Zw

+ g2 py(x,t)p (z,t)po(z,t) |, (2.1)

(2, 1)ha.o (2, 1). (2.2)

In the functional integral formalism, the Hubbard-
Stratonovich transformation® allows us to represent the
density-density (four-fermion) interaction in terms of a
functional integral of an action [the last two terms in
Eq. (2.4)] over an auxiliary bosonic field ¢,. The par-
tition functional for Hamiltonian (2.1) after introducing
the Hubbard-Stratonovich transformation can be written
as:

7 = /D¢TD¢D¢61’S(W,¢,¢)/E’ (2.3)

where the action, S, is given by

S = [ dtdslLo(@,0) + L1(6) + ¥ a(a, gz, D)

(2.4)

In Eq. (2.4), Lo is the free fermion Lagrangian density:
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and L; can be written in a matrix form:
_ 1 ¢+ (z,1)
L) = 5@ ato @i (570D ) o

with the matrix §—! given by
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The fermion field operator in the functional integral for-
malism, now becomes the Grassmann variable v,. Phys-
ically, the bosonic Hubbard-Stratonovich auxiliary field
variable ¢, describes collective fluctuations of the elec-
tron density and acts as a fluctuating chemical potential
in the Luttinger liquid.

Traditional bosonization in 1D Luttinger
liquid transforms the interacting fermionic field theory
to an entirely bosonic field theory. In this sense, sys-
tem and environment are not distinguishable. Here us-
ing an unconventional functional bosonization procedure,
we represent the 1D Luttinger liquid in terms of a “sys-
tem” of free electrons and an “environment” of fluctuat-
ing bosonic phases. Instead of transforming interacting
electrons to an entirely bosonic representation, we make
a chiral transformation on the electron field:

Voo (2,1) = e o (@, t) 02

3,4,6,8—10,40—42

(2.8)

and decouple the fermions 1/; and the fluctuating bosonic
fields ¢. This procedure corresponds to eliminating the
¢apq term in action S (2.4), and leads to the equation
for fluctuating phase ¥,:



h (% + avp%> Vo (2,t) = ¢o(z,1). (2.9)

At first sight, the transformed effective action after the
chiral transformation (2.8) seems to be just the sum of
the first two term in action S (2.4) with the substi-
tution of the electron field t, o (2,t) — 4o (x,t) plus
the relation (constraint) between ¢, and o, through Eq.
(2.9). It is known, however, in path integral formula-
tion that not only the action but also the functional
measure in partition function may change under a chi-
ral transformation*4. The change in the functional mea-
sure (Jacobean) is called chiral anomaly (non-invariance
under chiral rotations). The Jacobian of this chiral trans-
formation, defined as exp(iF'/h), can be calculated (cal-
culation is given in Appendix A) and the result is:

= /dwdtz %q&a(x,t)%. (2.10)

The final form of action after considering the Hubbard-
Stratonovich transformation, chiral transformation, and
the chiral anomaly (Jacobian) is

Sip = So($1,9) + S2(9)

where Sy = f dtdx Lg is the free electron action de-
fined through (2.5), and the effective fluctuating phase
action, So = S} 4+ F, is equal to the sum of origi-
nal quadratic action term S; introduced by Hubbard-
Stratonovich transformation and the Jacobian of fermion
functional measure F' due to the chiral transformation.
Here Sy = [dtdz Ly is defined through (2.6), and F,
n (2.10). The fact that the auxiliary fields ¢, can be
eliminated in terms of dynamical variables ¥, through
Eq. (2.9) makes S5(¢) quadratic in fluctuating phase 9.
An explicit expression of Ss(¢) can be found in Ap-
pendix B. In the representation (2.11), the noninter-
acting fermions ) (x, t) represent the “system”, and the
fluctuating phases ¥(x,t) represent the “environment”.
Physically, the fluctuations of ¥(z,t) transmit the inter-
action between the original electrons.

Taking a functional integral over ¢ (xz,t) and 9(x,t)
exactly reproduces the well-known anomalous power-law
correlation functions of the 1D Luttinger liquid” %, We
briefly outline the procedure for calculating correlation
functions here. A more detailed calculation is given in
Appendix B. The Green function, two-point correlation
function, following from the Hubbard-Stratonovich and
chiral transformations (including Jacobian), can be writ-
ten as

(2.11)
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where z; = (z;,t;) for abbreviation. The first factor-
ized term in (2.12), functional averaged over Sy, is just
the free electron Green function. The second factorized
term, phase fluctuation average, which give the result of
the product of the last two terms in (2.13), can also be
calculated exactly, since the fluctuating phase action S,
in Eq. (2.11) has quadratic nature. After some manipu-
lations (details in Appendix B), the single-particle Green
functions take the forms:

a 1 ()P A2\
Go(z1,22) = ﬂ@ <@> (nfgnm‘l> (2.13)
where
i = mij — avpti; +iadsgn(ti;), (2.14)
ij = A —ia(zy — avrtij), (2.15)
ni = A —ia(zi; — auvpti;), (2.16)
with x;; = x; —xj, ti; = t;—t;, 0 > 0 being infinitesimal,

and A~! the ultraviolet cut-off in the momentum. The
quantity uvg is the velocity of a “charge” excitation with
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The parameter «, the so-called anomalous exponent of
the 1D Luttinger-liquid correlation functions, is related
to the strength of the interaction and is given by

a=(1/K+K—2)/4 (2.18)

where K is the “stiffness constant” in traditional

bosonization scheme:

K = \/(whvp+g4—g2)/(7ThUF+g4+g2)- (2.19)

The value of K = 1 corresponds to noninteracting case,
and K > 1 represents the interaction being attractive
and K < 1 the repulsive. In principle, any 1D Luttinger-
liquid N-point correlation functions can be calculated
by following the similar calculation for Green function
(2.12). Taking the functional integral over ¢ and ¢,
we find, for example, the 4-point correlation function
D4 4 ++ has the expression:

Di’i++ (Zla 22,23, 24)
= (—i)Q<1/J+70-(2’1)1}[]1’0—(Z2)¢+,a'(Z3)1/JT|»,J(Z4)>S(¢'T7¢)
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where (;;, &ij, nij, are defined in (2.14)—(2.16). The 4-

point phase correlator, the last factorized term in (2.20),



useful for our later discussion to the problem of interchain
tunneling coherence, gives the result of the product of the
last two factorized terms in (2.21).

We next focus on the central issue of the physical role
of a small interchain single-particle tunneling amplitude
t; in coupled Luttinger liquids. The action for this sys-
tem can be written as

Sep =Y Sipm+ S, (2.22)

where S1p,, has the same decoupled (1/; and 1) expres-
sion in (2.11) except that the field variables acquire ad-
ditional transverse dependence n which labels the trans-
verse chain (Luttinger liquid) number. The action, S,
for transverse nearest-neighbor interchain tunnelings is

S, = /da: dt Y til (w0 +1,8(,n, t)e,, + H.C.

n,o,a

= / drdt " ti) 0 (@, )00 (@, )
n,o,a

xe Wantr(@t)—Van(@)] L { Q. (2.23)
In this representation it is clear that we have the system
of free fermions ¢ (z,t) and the environment of the fluc-
tuating phases ¥(z,t) both living in every chain. The
transverse interchain tunneling action (2.23) then plays
the role of the coupling between the system and environ-
ment.

III. SCHWINGER-KELDYSH CLOSED-TIME
PATH FORMALISM

To address the question of interchain hopping coher-
ence, we shall use perturbative expansion in powers of
t,; within the Schwinger-Keldysh double-time or CTP
formalism®®. Let us discuss briefly the basic idea of
this CTP formalism (see also Feynman-Vernon influ-
ence functional formalism*®). This is the same formal-
ism that was utilized to study the two-level model3>-36.
In this formalism, the functional integral representation
is applied to study the time evolution of the electron
density matrix R = |¥(z,t))(¥(z,t)| rather than only
the states in Hilbert space |¥(z,t)) where H|¥(z,t)) =
ih(0|¥(z,t))/0t). Thus it is necessary to keep track of
the two times, one representing the evolution of |¥(z,t))
forward in time, and another representing the evolu-
tion of (¥(z,t)|, which can be thought of as the evo-
lution of |¥(z,t)) backward in time. In field theory,
let us introduce |¢;(z)), a simultaneous common eigen-
state of all the Heisenberg field operators ¢ (z,t) at
time t: G (2, )[9(2)) = (z,Oln(x). For a given
value of (z,t), ¥(z,t) corresponds to a point in the
field configuration space. The Schrodinger wave function
(V¢ (z)|¥(z,t)) is therefore a functional of ¥ (z,t). In this

way one can express the time-dependent density matrix
element as a product of transition matrix elements from
t; to ¢ty and the time reversed (complex conjugate) ma-
trix element from ¢7 to ¢; times the initial density matrix
element:

R(s, 0, tr) = (s | Rt
= (11U (g, t) R(E)T (25, 1) 1)

- / Dubi DL (| R4 442
X (5[0 (tr, t)l ) L0 (kg )0 (3.1)

The spatial coordinate dependences are not shown ex-
plicitly in (3.1), but they can be recovered easily if one
wishes.

Introducing the path integral representation for each
transition matrix element in Eq. (3.1) results in the ex-
pression:

- / DD, T (g, byl 1) R, ), (3.2)

where J, the propagator of the density matrix, is given
by
J(I/}f’ 'L/J}v tf|"/}ia @M: ti)
Yy ; ¥; ; P ,
:/ D et [ da dt L[y] Dy et [ da’ at LW (3.)
: W,
and L is the Lagrangian density. Hence, to incorporate
both the statistical information carried by the density
matrix and the dynamic evolution governed by the La-
grangian, it is physically necessary to deal with the prop-
agation from ¢; to ¢ty and then turns back to t;, forming
a double-time contour or CTP. Particularly, the inter-
ference between the forward- and backward-in-time field
configuration is related to the off-diagonal component of
the density matrix and then to the quantum coherence. It
is known that G2, the 1, 2-component of Keldysh Green-
function matrix is directly related to the exact electron
density matrix3?

R(x,2';t) = —ihGa(z, 2’5, t). (3.4)

The vanishing of the off-diagonal component of the den-
sity matrix is a characteristic of quantum incoherence.

IV. COHERENT/INCOHERENT INTERCHAIN
TUNNELINGS

The perturbative expansion in ¢; within the double-
time functional integral for Luttinger liquids leads to
the diagram shown in Fig. 1. The dashed line connect-
ing points A and B represents the tunneling from the
chain n to the chain n + 1 that takes place at the space-
time point (x,,t,). The top (bottom) solid lines with



the right (left) arrows represent the forward (backward)
time propagation of ¢ along the corresponding chains
n, n + 1, and n + 2. The left wavy line represents
the correlation between the phases exp[ifg,n(%n, tn)] and
exp[—itq (2, t),)], which mediates interaction between
electrons on the chain n. In principle electrons on the
same chain are correlated and are connected by wavy
lines. By taking the chain n + 1 as an example, there
are wavy lines (correlators) between points B and C, B
and C’, B and B/, C and C’, C and B/, and B’ and C'.
However, for our purpose, only the relevant wavy lines
are shown in Fig. 1.

n+1

n (zn, tn) (Tnt1, tnyt)

n (I;zv tiz)

FIG. 1.

n+1 n -+ 2

(@115 thr1)
Typical diagram of perturbative expansion in
power of t, within Schwinger-Keldysh double-time or
closed-time path.

Strictly speaking the perturbative expansion in ¢
within the closed-time path is carried out in the so-
call single-dot approximation®” in the inverse-self-energy
I’ This is exactly the same approximation as for
the discussion!!>!3:20 of renormalization-group relevant-
irrelevant condition for the ¢; except that in the latter
case only one forward-in-time path is considered. But
when the intrachain interaction is not too strong (i.e., the
anomalous correlation exponent « is small enough) and
the interesting region of temperature or energy (w < Ep)
is smaller than the effective tunneling amplitude (related
to the so-called 1D crossover temperature Tip & teg =
(ty/Eg)/(1-0))1220.27 "the perturbation ¢, is relevant,
i.e., each order in ¢, carries a strongly divergent power of
the energy Ex“w® . In principle, one should consider
all the higher-order diagrams, because they become of the
same order of magnitude. However, since we are only in-
terested in the behavior of the relative distance between
the interchain tunnelings for the forward- and backward-
in-time propagation in the neighboring-chain correlation
functions, the inclusion of higher order diagrams would
not change the power-law behavior, i.e., the exponent of
this relative distance in correlation functions.

We next consider two extremal cases: noninteracting
and strongly interacting electrons. For noninteracting,
free electrons, the wavy-line correlator is equal to 1,
so forward and backward electron lines are completely
independent. Each of these lines (see Fig. 2(a)) col-
lects the series in ¢, independently and produces an ex-
tended, coherent Bloch field configuration for the trans-
verse electron motion. On the other hand, the interac-
tion between electrons introduces correlation between the
forward- and backward-in-time electron interchain tun-
nelings. In the extreme case of very strong binding, the

wavy lines tie the two interchain tunneling events, one
forward-in-time and the other backward-in-time, very
tightly into a pair so that (zp,t,) =~ (z,t)). The
closely bound pairs of forward- and backward-in-time
electron tunnelings are called “collapsed blips”3% for the
two-level model*>. When similarly tightly bound pairs
of forward- and backward-in-time electrons tunnel be-
tween chains for all neighboring chains as shown in Fig.
2(b), we say that the evolution of the field configura-
tion g0 n(z,t) and its complex conjugate component
Y} 5 (2, t) form an independent bound pair combination
U} 5 (@, 8)tha,0n(z,t). In this case, the evolution of the
probability from an initial field configuration to a final
field configuration is equal to the sum of all possible evo-
lutions of the pair field configuration 1/1270(33, t) a0 (z,1)
rather than the square of the transition amplitude (the
square of the sum over all possible evolutions of the field
configuration v, n(z,t)) from initial to final field con-
figuration. In other words, the electron field density in
Luttinger liquids, pan(z,t) = Y, ¥} 5. (2, )00 (2, 1),
rather than the electron field variable g o n(Zn, tn), hops
from the chain n to n + 1 (see Fig. 2). This regime cor-
responds to the incoherent tunneling between the chains.
This picture of incoherence is similar to the case for the
two-level model*®.

n n+1 n+2

FIG. 2. (a) Coherent propagation of the electron field tn;
uncorrelated interchain tunnelings for the forward and back-
ward electron propagations in the case of noninteracting elec-
trons. (b) Incoherent propagation of the electron probabil-
ity density p, = ¥}e,; tightly bound, paired forward- and
backward-in-time interchain tunnelings in the extreme case
of strongly interacting electrons.

We give our criterion of coherent-incoherent transition
in the following. We propose that the incoherent regime
takes place when the integral of neighboring-chain corre-
lators [ d(zy, — ) d(t, — t},) over the relative distance
between the interchain tunnelings for the forward and
backward propagation starts to converge at the upper
(infrared) limit*”. When the integral is convergent, the
interchain tunneling events are bound into pairs called
“collapsed blips”, which corresponds to the incoherent
regime. If the integral does not converge, then the
regime is coherent. Because the Luttinger-liquid correla-
tors are power-law, it is straightforward to find a condi-



tion for the convergence in terms of the Luttinger-liquid
exponents. Taking a = + branch electrons as an ex-
ample, tracing out functional average of the correlator
(exp[ity n(2n+1) = 104 n(2n) + 04 n(2) — W04 n(zn4)])
over the environment degree of freedom ,, and using
the infrared (large-distance) asymptotic forms of vari-
ables &%, ~ 0l & (Tnn — aUUFty, ), We can write the
relevant integral expression following from the expression
dnjz_n’ dn;n’

of (2.21) as:
/(nrtn’nnn’)a-

The integrand in (4.1) is a square of the relevant relative
distance dependence in (2.21) due to the correlator con-
tributions from both the wavy lines of the neighboring
chains n and n + 1. The spin-charge separation prob-
lem is not important to the issue of convergence of the
integral expression (4.1) at the upper limit. As long as
the spin and charge velocities are finite, they only intro-
duce a finite factor?’. The convergence of the asymp-
totic integral (4.1) hence gives @ > 1 as the condition
for the regime of the incoherence phase. This result is
different from the result obtained before32:33, where the
confinement of coherence (incoherence regime) was found
to occur at a > 1/2. The condition for the ¢, relevance
in renormalization-group sense is also a condition on the
exponents and is known?! to be irrelevant for o > 1 and
relevant for a < 1. Our result indicates that the bound-
ary value that separates coherent and incoherent regimes,
ac/ic = 1, is the same as the value that separates relevant
and irrelevant regimes. Thus the relevant but incoherent
regime is not possible.

Our criterion of coherence-incoherence is formulated
in exactly the same way as for the two-level model*>, ex-

(4.1)

cept there is no spatial coordinate x in the latter case.
The closely bound pairs of forward- and backward-in-
time electron tunnelings are called “collapsed blips”3°
for the two-level model. It is the extra dimension z that
causes the difference between the results for the two-level
model and the coupled Luttinger liquids.

V. CONCLUSION

In conclusion, we have introduced the functional
bosonization approach which transforms the 1D Lut-
tinger liquid into a representation of the “system” of
free electrons and the “environment” of the fluctuating
bosonic phase. The power-law correlation functions of
the 1D Luttinger liquid are obtained straightforwardly
and reproduced exactly by a functional average over free
fermion action and fluctuating chiral phase action. We
have examined the system of Luttinger liquids coupled by
small transverse interchain single-particle tunneling ¢ in
terms of the CTP formalism. We find that the interchain
tunneling ¢, is relevant and coherent for o < 1 and irrel-
evant and incoherent for a > 1. There is no window for
relevant but incoherent tunneling between 1D Luttinger
liquids.

ACKNOWLEDGMENTS

We are grateful to B. L. Hu, K. Shiokawa, S. Ram-
sey, N. Dupuis, K. Sengupta and A. J. Leggett for useful
discussions. This work was partially supported by NSF
under Grant DMR-9417451 and by the Packard Founda-
tion.

APPENDIX A: CHIRAL JACOBIAN

In this Appendix we calculate the Jacobian (2.10) of
the chiral transformation (2.8). Let us define the action
S as the sum of the first and third terms in (2.4):

So=So(w! ) + [ dide 3 6w 0pula ). (AD)

a,0

Then we define

eF'(@)/h = Jacobian of the chiral transformation
[ DytDy eiSs(v1,0,0)/h
- [ DD eiSo(@t0)/n

(A2)

Instead of calculating the Jacobian directly, let us cal-
culate its variation with respect to a variation d¢,. By
using the so called “point-splitting” method, the func-
tional derivative of functional F' with respect to ¢, from
(A2) is given by

SF I DUIDY S ¢l (@ + 0, t + 8t) b o (x, 1)l 53 (V1 ¥0) /1 A3
o T 52,660 fDI/}TDI/) eiS3(¥T,4,0) /N ( )
= 6:”17351;‘111_}0 Z(¢Z7U($ + 6.’1:, t+ 6t)1/1a70—(1', t)>53 (¥t ,9,0)
— lim Z(l/;l,a(x + 07, t + 6t)1/;a70(x)t)>50(@[~;‘r,@7;) e i(Pa (@40 t+0t)—Da(@,:t)) (A4)

dx,0t—0
o



The advantage of Eq. (A3) is that, after we make the chiral transformation (2.8) on S5 (A1) to obtain Eq. (A4), the
Jacobian of the transformation cancel out in numerator and denominator of the functional average expression (A3).

The 1D free fermion Green function is easy to obtained:

e .00 O 5000 = |

dkdw etk(z—a")—iw(t—t") A5
(2m)? w — avpk + id sign(avyk) (A5)
1 —

: (A6)

~ 2 (x —2') — avp(t — ') + iad sign(t — t')

Making the expansion on the phase difference term of (A4), J4(z + dz,t + 0t) — o (z,t) = (Ox9,)dz + (Otd,)0t +
O(6z?%,6t%), and using (A5) for the free fermion Green function, we find

0F

Sba (27)?

Changing the variables k' = k+0,19,, w' = w+ 09, per-
forming the frequency integration, and then taking the
dx, 0t — 0 limits, we end up with the expression that

oF / %HHF[GUF(]CI — 0:9,)]- (A8)

0ba

Expanding the Fermi distribution function and dropping
the term of total number of fermions*®, we finally get

oF a

—— = =00, (x,t).

0o (z,t) 7 (1)

Since the auxiliary bosonic field ¢, is, from (2.9), propor-

tional to the phase field ¥,, we arrive at the result that

(A9)

dkdw e—i(k+029a)0e+i(w+0:9a)dt+0(527,6¢%)
2¢  lim
dx,0t—0

w —avpk + idsign(avsk)

S2 () = F(¢) + 51(9)

- 27T’UF

(A7)

the chiral Jacobian, the extra contribution to action due
to the chiral transformation (2.8), is given by (2.10).

APPENDIX B: CALCULATIONS OF
CORRELATION FUNCTIONS IN 1D
LUTTINGER LIQUID

In this Appendix we calculate correlation functions in
1D Luttinger Liquid. Let us first find the explicit expres-
sion for the fluctuating phase action Sy (¥9). After substi-
tuting (2.9) into (2.10) and (2.6), and Fourier transform-
ing to momentum space, we find

o / % (94 (=k, —w), 9 (—k, —w)) K ~morkerk ; )

(w4 vpk)vpk

L _Thvr 91w —vrk)®  —ga(w® — vpk?) Uy (k,w)
(92 — g3) —g2(w? —vEk?)  ga(w +vpk)? v (k,w) )’
_ B [ dhde A 9. (k)
=% | @ (W (—k,—w),0_(—k,—w)) M(k,w) (ﬁ_(k,w)
h ~
=——=[v,M B1
» 19, 1) (B1)
[
where the matrix M given by and normalized coupling constants:
. My, My_
M = ~ ++ ~ + (B2) — g2 — g4
) = = 4 B
M | M — e — (B5)
with matrix elements:
A, = _—21 (@ — avk) The velocity of charge sector u is defined in (2.17).
mur (5 — 93) Now we are in the position to calculate the correla-
x[ga(w + avpk) — a(u® — 1)vrk], (B3)  tion functions. Let us calculate the single-particle Green
N i ~ function first. Fourier transforming the phase fluctuation
M_qa = g2(w +vpk)(w —vrpk),  (B4) average term in (A6), we find

Tor(g; — 93)



Dﬁa exp dkdu),ﬂ ) eikz‘l—iwtl _
(2m)?

f Dﬁa exp(154(94)/h)

eika—iwtz + 7:54(19a)
(e%e (:1)=i0a(z2)y ) h }

Sa(9) =

Using the identity
efé[ﬂ,Mﬁ]HB,ﬁ] _ efi[ﬁfM_lB,M(ﬁfM_lB)]+%[B,M_lB]
(B7)

with the definition

B9 = [ Gossoat=k )b (ko) (570 )
(B8)
we obtain
(eiﬁa(zl)fiﬁa(zz)>52(ﬂ) — o3[B.M7B] (BY)
where the transpose of B is:
B (k,w) = { E ( bk, o >§ fr am (B10)
with
b(k,w) = e~ikertivt _ g=ikaativta (B11)

The inverse of matrix M (B2) can be calculated and the
result is

=[G ] e
with
N ; 1 1
(M )aa = % (w —awpk  w— cwpk>
+%a (w —wopk  w +111ka>  (B13)
(Mil)ﬂm - %ZV (w — 1lwpk W+ ivﬂc) ' (B14)

The parameter «, which turns out to be the anoma-
lous exponent of the Green function in 1D Lut-
tinger liquid, is defined in (2.18). Another ex-
ponent of correlation function v which shows up,
for example, in the 4-point correlation function

(V40 (20)0] 5 (22)0— o (23)0] ,(24))5(41,4), has the ex-

pression
1/1
=-|=-K
=i (%)

where K, the “stiffness constant”, is defined in (2.19).

(B15)

From (BlO) and (B11), we find that the exponent
(1/2)[B, M 'B] of (BY) only picks up one of the diag-
onal elements (M~1),, of matrix M ~':

, ; Lo v
<elﬂa(z)_lﬂa(0)>52(l9) = eXp{i[B, M_IB]}

= exp {m/ %[1 — cos(kx — wt)](]\Zfl)aa} . (B16)

Following identity is very useful in our calculation:

; / dkdw 1 — cos(kx — wt)

i (2m)? | k(w — avpk + insign(ak))
_.a A —ia(z — avpt)
= lim ZIn [ < ] . (B17)

In the derivation of the identity (B17), we regulate the
integral at large momenta by introducing a convergence
factor exp(—A|k|), where A™! is the ultraviolet cut-off.
As the physics does not involve large momenta, that is
large energies, the introduction of a cut-off will not make
any difference and, at the end of any calculation, the
A — 0 limit can be performed. Using Eq. (B17), one can
easily figure out from (B13) and (B14) that

<ei19a(z)7i190(0)>s2(19)
[ A—ia(z — avpt) L/2
| A —ida(z — auvrt)
A2 /2

X

{[A —i(x —wurt)][A + i(x + uvpt)] (B18)
Hence, by means of (2.12), (A6) and (B16), the single
particle Green functions take the forms of (2.13). One
can see that the parameter « (2.18) indeed is the anoma-
lous exponent in Green function (2.13).

The similar procedure of calculating single particle
Green function could be applied to compute N-point
correlation functions. We consider the 4-point correla-
tion function (Y (21)¥0} ,(22)004 o (23)0] , (24)) 50470
(2.20), which is useful in the discussion of coherent-
incoherent transition. The free 4-point correlation func-
tions in (2.20) can be easily computed and is equal to
the product of two free fermion Green functions defined
n (A6). The phase fluctuation average has the simi-
lar patterns as that in (B7). Therefore, instead of (B9),
(B10) and (B11), we have:
e3[B.M "' B]

<ei(19+(21)—19+(Z2)+19i(23)_’9i(24))>54(19) =

(B19)



where BT(k,w) = (b(k,w),0), with
b(k,w) — e—ikm1+iwt1 _ e—ikw2+iwt2

+e—ikw3+iwt3 —tkxatiwty

—e (B20)
The matrix M and M~! are defined as before. Follow-
ing the same procedure of deriving single particle Green
functions (2.13), we find the expression (2.21) for the 4-
point correlation functions DY | | (21,22, 23,24). These
correlation functions are reproduced exactly as those in
Refs. ™10,

APPENDIX C: COHERENCE/INCOHERENCE
OF TWO-LEVEL MODEL

The attractiveness of our approach for the coher-
ence/incoherence condition of single-particle interchain
tunnelings between Luttinger liquids is that it is formu-
lated in exactly the same way as in the two level model,
except there is no spatial coordinate = in the latter case.
We present in this Appendix how the procedure works for
the two-level model. The characteristic Hamiltonian for
the two-level system coupled to a dissipative environment
can be written as follows3®:36:

1 1 1
HTLM = —ihAO'w + Z <§mlwla:3 + %Iﬁ)
i 1

1
+§O'ZZCZ'1‘Z'. (C].)

Here o’s are the Pauli matrices, C; is the coupling
strength to the ith oscillator, and m;, w;, ¢; and p; are
the mass, frequency, position and momentum of the ith
oscillator, respectively. The first term in Hamiltonian
(C1) describes a quantum particle, the system, tunnel-
ing between two states connected by a matrix element
A. The second term in (C1) represents the environment
of a bath of oscillators. The third term in (C1) describes
the interaction between the system and the dissipative
environment with the coupling strength C; . The bath
of harmonic oscillators has distributed frequencies. We
consider the Ohmic bath, for which the spectral density,
J(w), of the environment is given by

C?
J(w) = g Z mh;}é(w —w;) = 2rhiowe™/¥s (C2)

where w, is a cutoff frequency and a, is a positive con-
stant measuring the strength of the coupling to the envi-
ronment and the stronger the interaction with the envi-
ronment, the larger the value of ay,.

If initially the particle is in one of the two states, say,
in the o, =1 state for all t < 0, |¢(t < 0)) = |os, 1),
then in the absence of interaction with the environment,
ie. C; = 0(ay, = 0), the wave function according to el-
ementary quantum mechanics can be easily written as
follows:

1
V2

6i¢+€iAt/2|O'x,T> + ei¢_ e_iAt/2|Ux,J,> .

() =
(C3)

In this case, the relative phase between these two eigen-
states remains well defined indefinitely and the proba-
bility to find the particle in the other state oscillates in
time, p(t) = ((0:(t)) + 1)/2 = (1 + cosAt)/2. When
interaction with the environment is sufficiently strong
(when oy, > 1/2) , this probability does not oscillate, but
changes in time exponentially, saturating at the proba-
bility 1/2, p(t) ~ £(1 + e~'*). This behavior is called
incoherent, because it corresponds to a classical, rather
than quantum-mechanical, coupling of the two states.
At a stronger interaction with the environment (when
ay > 1), the particle gets indefinitely localized in the ini-
tial state, and does not make a transition to the other
state at all. In this regime, A is irrelevant®”-38,

We shall apply perturbation theory in the tunneling
matrix element A rather than in the system-environment
interaction. To diagonize the last three terms in Hrrg,
it is simply necessary to shift eiaclé oscillator through a

distance o.dx;, where dx; = —5 —=5. The appropriate

unitary operator is

- i Ci .

The transformed Hamiltonian
H'II‘LM = UI{TLMU_1
1 .
= —ihA(0'+67ZQ + h.c.) 4+ Hoscillators (05)

where @ = 3", %pl, and oy = (0, £i0y)/2. The tun-
neling operator between the two states has been replaced
by an operator which creates and destroys excitations of
the oscillator bath, as well as changing the state of the
spin. The two-point correlation function of cTe~*? can
then be found:

. . [ee] l_efiu)t
—iQ(t) _— iQ(0)\ __
(oFe 1) 5 i20)) —exp{—/0 — J(w)}

w

® 1 —iwt
= exp {—Qan / —c e”/”“}
0 w

~ €T (1) T2, (C6)

Next we discuss the coherent-incoherent transition for
the two-level model within the Schwinger-Keldysh CTP
formalism. Suppose that the top and bottom diagrams in
Fig. 3(a) represent one of the possible paths forward- and
backward-in-time respectively in the two-level model.
The paths can jump only between two discrete values +
and — which correspond to the state in the right and left
well or o, =1, respectively. One can visualize the dou-
ble path integrals in CTP formalism as a single integral



over a single path (see Fig. 3(b)) that jumps between the
four states corresponding to {1,1}, {1, 1}, {4, 1}, {4}
(the first element in the braces { } is the system state
in the forward-in-time path and the second element is
the system state in the backward-in-time path). Blips,
as shown in Fig. 3(b), are the periods when the sys-
tem is in either of two off-diagonal states correspond-
ing to {t,/} or {],1} state. It was argued® that for
a, — 1/2 from below, only blips of effective vanish-
ing length, that is “collapsed” blips, contribute. In this
case, interactions among different collapsed blips van-
ish and noninteracting-blip approximation®®3¢ becomes
exact. The probability or the time dependent expec-
tation value of o,, P(t) = (0.(t)) = (2p(t) — 1)/2 =
exp[—mA%t/(2w,.)], has pure damped behavior without
any oscillation, which is just the signature of incoherence.
The fact that blips collapse and become noninteracting
is related to the situation that interference becomes neg-
ligible. The particle states and their complex conjugates
in two different time branches of the CTP are bound
and hop together, i.e., the change of the state from 1 to
J in one of the two time branches immediately causes
the corresponding state of the particle in the other time
path changes from | to 1 state. Therefore the evolution
of probability density from an initial state to a final state
is equal to the sum of all possible evolutions of the bound
pairs, collapsed blips, rather than the square of the tran-
sition amplitude (the square of the sum over all possible
evolutions of the wave function) from initial to final state.

forward in time

(@)
backwardﬁme
/bﬁps\
B | e
forward in time@_\ o @ o @ A @
NN N N N W D (5
\J AR B I AR

backward in time

FIG. 3. (a) Possible forward- and backward-in-time paths
for the two-level model. (b)The corresponding visualized sin-
gle path. (c) Coulomb charges lying in the Schwinger-Keldysh
CTP and under certain condition charges at different branches
of the CTP pairing into noninteracting or independent neutral
dipoles with vanishing dipole moments.

The formation of “collapsed” blips in two-level model
can be understood in terms of Coulomb gas (CG)5%>!
language, i.e., Coulomb charges lying in the Schwinger-
Keldysh closed-time path or “double-time” contour. In
terms of CG language, the times spin flips correspond to
the locations of charges. We assume that the time mo-
ment at which spin flips from 1 to | (kink) corresponds to
the position of positive charged particle in a 1D space and
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the moment from | to 1 (anti-kink) corresponds to that of
negative charged particle. The locations of charges cor-
responding to the times that spin flips in Fig. 3(a) in the
CTP, for example, are shown in Fig. 3(c). Under certain
conditions (i.e., when particle-environment interaction is
strong enough in the two-level model), the charges at
different branches of the CTP pair into noninteracting
or independent neutral dipoles (see Fig. 3(c)) with van-
ishing dipole moments (vanishing distances: ¢ ~ t'). In
this case, the CG is said to be in the incoherent (con-
fined) phase. These independent dipoles with vanishing
dipole moments develop from the short distance singu-
larity (when approaching from the plasma phase) of the
attractive interaction between nearest-neighbor opposite
charges in two different time branches of the CTP. The
formation of these “collapsed” dipoles play a role simi-
lar to the “collapsed” blips in the dissipative two-level
model, where particle states and their complex conju-
gates in two different time paths are tightly bound and
hop together. This corresponds to the condition for the
disappearance of coherence.

We next discuss the condition of coherent-incoherent
transition for the two-level model in a similar way as
in the case for the interchain tunneling between coupled
Luttinger liquids. We propose that the incoherent regime
takes place when the integral [ d(¢t —t') over the relative
time distance between the spin flips for the forward and
backward propagation starts to converge at the upper
(infrared) limit. The N-point correlation function can be
found by the similar procedure for obtaining Eq. (C6).
Tracing out the environment degrees of freedom, p; and
z;, we find that the N-point correlator has the power law
dependence of 2y, on the relative time distance between
the spin flips for the forward and backward propagation.
We write the relevant integral expression as the following:

d(t — t')
=

The convergence of the integral (C7) at large distance
when approaching from the dipole phase or the short
distance singularity of the integral (C7) when approach-
ing from the plasma phase corresponds to the incoher-
ent regime. Therefore the regime, a,, > 1/2, in which
the blips “collapse” or Coulomb charges in different time
branches become tightly bound into independent dipoles
with vanishing dipole moments (i.e., interference become
negligible), corresponds to the regime of incoherence in
the two-level model.

The picture of the Coulomb charges lying in the
Schwinger-Keldysh closed-time-path and tending to re-
organize as a dipole gas has been used to describe the
tunneling statistics of Luttinger liquids through narrow
barriers®?. It was shown that an independent or noninter-
acting dipole approximation gives a Poisson distribution
for the locations of the dipole centers of mass, which cor-
responds to the situation when the tunneling events in
either direction are independent or shot noise is uncor-
related. The independent or noninteracting dipoles with

(C7)



vanishing dipole moments (vanishing distances), or with
the positions of the charges in forward- and backward-
time path and dipole centers being not distinguished in

the low-frequency range (w < wo = €*V/h) in Ref.’? are
similar to the “collapsed” blips in the two-level model.
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