
Coherence of tunneling between one�dimensional Luttinger liquids

Victor M� Yakovenkoa and Hsi�Sheng Goanb

Department of Physics and Center for Superconductivity Research� University of Maryland� College Park� MD ������ USA

�Preprint� compiled� February �� �����

The problem of coherence�incoherence of electron tunneling between one	dimensional Luttinger
liquids coupled by a small interchain single	particle tunneling amplitude t� is studied in terms of
Schwinger	Keldysh double	time or closed	time path formalism
 Using an unconventional functional
bosonization procedure� we represent the one	dimensional Luttinger Liquid in terms of a �system�
of free electrons� and an �environment� of uctuating bosonic phases
 The coupling between the
system and environment is introduced by the interchain single	particle tunneling of the amplitude
t�
 We �nd that the conditions for incoherence and irrelevance �in renormalization	group sense� of
t� coincide� and thus the relevant but incoherent regime is not possible
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I� INTRODUCTION

The problem of one�dimensional ��D� Luttinger
liquids���� coupled by a small interchain single�particle
tunneling amplitude t� attracted a great deal of atten�
tion in recent years������ It was shown�� that� unless
intrachain interaction is extraordinarily strong� t� is a
relevant perturbation in the renormalization�group sense�
Then Clarke� Strong� and Anderson����� put forward the
hypothesis that� while being relevant� the single�particle
interchain hopping is incoherent� Thus� the transverse
electron motion is not quantum� but rather classical� so
there is no coherent transverse energy band� The math�
ematical foundation of their theory is based on the anal�
ogy with the so�called two�level model������ The latter
model consists of a quantum particle that has two de�
generate states connected by a matrix element �� The
particle interacts with an �environment	� a thermal bath
of oscillators with distributed frequencies� If initially the
particle is in one of the two states� then� in the absence of
interaction with the environment� the probability to 
nd
the particle in the other state oscillates in time� accord�
ing to elementary quantum mechanics� When interaction
with the environment is su�ciently strong� this probabil�
ity does not oscillate� but changes in time exponentially�
saturating at the probability ��� This behavior is called
incoherent� because it corresponds to a classical� rather
than quantum�mechanical� coupling of the two states� At
a stronger interaction with the environment� the particle
gets inde
nitely localized in the initial state� and does
not make a transition to the other state at all� In this
regime� � is irrelevant������ In the two�level model� there
is a 
nite range of the particle�environment interaction
strength where � is relevant but incoherent� Clarke�
Strong� and Anderson����� conjectured that such a sit�
uation may take place also when t� �interchain single�
particle tunneling amplitude� couples two �or more� �D
Luttinger�liquid chains�

While this is certainly a very interesting suggestion� it
raises a number of questions� First� the two�level system

is a zero�dimensional system� where the particle evolves
only in time� On the other hand� in a �D Luttinger liquid�
electrons also move in space along the chains� The e�ect
of di�erent dimensionality has to be taken into account
and may change the results� Second� in the standard ap�
proach to decoherence� it is necessary to identify the �sys�
tem	� the degree of freedom whose evolution we follow�
and the �environment	� the other degrees of freedom that
we do not follow� Tracing over the environmental degrees
of freedom causes decoherence� The distinction between
the �system	 and �environment	 is clear for the two�level
model� but is not obvious in the case of coupled Luttinger
liquids� Third� the issue of coherence�decoherence can�
not be decided by studying only the second�order term
in t�� It is necessary to examine the general structure of
expansion in t� to high orders�
In this paper� we o�er a systematic study of these is�

sues� To address the second question� we utilize a some�
what unconventional form of �D bosonization� In this ap�
proach� the noninteracting electrons represent the �sys�
tem	� the �uctuating bosonic phase 
elds represent the
�environment	� and the coupling between the system and
environment is introduced by the interchain single par�
ticle tunneling of amplitude t�� To address the ques�
tion of interchain hopping coherence� we use perturba�
tive expansion in powers of t� within the double�time
functional integral� also known as the Schwinger�Keldysh
closed�time�path �CTP� formalism��� Our criterion of
coherence�incoherence is formulated in exactly the same
way as for the two�level model������ except there is no
spatial coordinate x in latter case �a discussion for the
two�level model is given in Appendix C�� We 
nd the
result that the conditions for incoherence and irrelevance
of t� of coupled Luttinger liquids coincide� and thus the
relevant but incoherent regime is not possible�

The outline of this paper is as follows� In Sec� II� we
present our functional bosonization approach for the �D
Luttinger liquid� The anomalous power�law correlation
functions of the �D Luttinger liquid can be reproduced
exactly in this approach� In Sec� III� we brie�y discuss
the basic idea of the Schwinger�Keldysh CTP formalism�
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In Sec� IV we carry out the perturbative expansion in
powers of t� within the CTP and discuss the condition of
coherent�incoherent transition for the coupled Luttinger
liquids� A conclusion is given in Sec� V� The explicit eval�
uation of the chiral Jacobian �due to the chiral transfor�
mation made in our functional bosonization� and detailed
calculations of �D Luttinger correlation functions in our
approach are given in Appendix A and B respectively�
We discuss how our criterion of coherence�incoherence
applies to the two�level model in Appendix C�

II� FUNCTIONAL BOSONIZATION OF �D
LUTTINGER LIQUID

We now present our functional bosonization approach
for the �D Luttinger liquid�� Our functional approach
consists of three major steps� the Hubbard�Stratonovich
transformation� the chiral transformation� and the inclu�
sion of chiral Jacobian �anomaly�� Bosonization based
on functional integration� 
rst discussed by Fogedby	�

and later by Lee and Chen	� for the �D Lutinger liquid�
has been recently generalized and developed by Kopi�
etz� Sch�onhammer� Hermisson and Castilla	�� to bosonize
interacting fermions in arbitrary dimensions� The dif�
ference between our functional bosonization and previ�
ous approaches is that instead of transforming interact�
ing electrons to an entirely bosonic representation� af�
ter a Hubbard�Stratonovich transformation	� we make
a chiral transformation on the electron 
eld� which al�
lows us to decoupled the Lagrangian �action� into a sys�
tem of free fermions and an environment of the �uctuat�
ing bosonic phases� The �D Luttinger�liquid correlation
functions with anomalous power�law behavior can be ob�
tained straightforwardly and reproduced exactly in our
approach�
For simplicity� we restrict ourselves to the zero temper�

ature spin� �� case but with only spin�independent forward

scattering� In the terminology of g�ology������ � only g�
and g	 �charge sector	 interactions are included� The
Hamiltonian for this �D Luttinger liquid model could be
written as

�H �

Z
dx

�X
��a

��ya���x� t���i�havF
�

�x
� ��a���x� t�

� g� ��
�x� t�����x� t� �
X
a��

g	


��a�x� t���a�x� t�

�
� ����

where ��ya���x� t��
���x� t�a�� are fermion creation and an�

nihilation 
elds� � ��� � is the spin index� a � � rep�
resents two branches of the dispersion varying linearly
��a�k� � a�hvF k� about the two Fermi points �kF � and
energy is counted from the Fermi level� The density op�
erator ��a�x� t� is de
ned as

��a�x� t� �
X
�

��ya���x� t�
��a���x� t�� ���

In the functional integral formalism� the Hubbard�
Stratonovich transformation	� allows us to represent the
density�density �four�fermion� interaction in terms of a
functional integral of an action �the last two terms in
Eq� ����� over an auxiliary bosonic 
eld �a� The par�
tition functional for Hamiltonian ���� after introducing
the Hubbard�Stratonovich transformation can be written
as�

Z �

Z
D�yD�D� eiS��y������h� ����

where the action� S� is given by

S �

Z
dtdx�L���

y� �� � L���� �
X
a

�a�x� t��a�x� t���

����

In Eq� ����� L� is the free fermion Lagrangian density�

L���
y� �� �

X
a��

�ya���x� t�i�h�
�

�t
� avF

�

�x
��a���x� t��

����

and L� can be written in a matrix form�

L���� �
�


��
�x� t�� ���x� t���g

��

�
�
�x� t�
���x� t�

�
����

with the matrix �g�� given by

�g�� �

�
g	 g�
g� g	

���
�

�

g�	 � g��

�
g	 �g�
�g� g	

�
� ����

The fermion 
eld operator in the functional integral for�
malism� now becomes the Grassmann variable �a� Phys�
ically� the bosonic Hubbard�Stratonovich auxiliary 
eld
variable �a describes collective �uctuations of the elec�
tron density and acts as a �uctuating chemical potential
in the Luttinger liquid�
Traditional bosonization��	��������	��	� in �D Luttinger

liquid transforms the interacting fermionic 
eld theory
to an entirely bosonic 
eld theory� In this sense� sys�
tem and environment are not distinguishable� Here us�
ing an unconventional functional bosonization procedure�
we represent the �D Luttinger liquid in terms of a �sys�
tem	 of free electrons and an �environment	 of �uctuat�
ing bosonic phases� Instead of transforming interacting
electrons to an entirely bosonic representation� we make
a chiral transformation on the electron 
eld�

�a���x� t� � ��a���x� t� e
i�a�x�t� ����

and decouple the fermions �� and the �uctuating bosonic

elds �� This procedure corresponds to eliminating the
�a�a term in action S ����� and leads to the equation
for �uctuating phase �a�





�h

�
�

�t
� avF

�

�x

�
�a�x� t� � �a�x� t�� ����

At 
rst sight� the transformed e�ective action after the
chiral transformation ���� seems to be just the sum of
the 
rst two term in action S ���� with the substi�

tution of the electron 
eld �a���x� t� � ��a���x� t� plus
the relation �constraint� between �a and �a through Eq�
����� It is known� however� in path integral formula�
tion that not only the action but also the functional
measure in partition function may change under a chi�
ral transformation		� The change in the functional mea�
sure �Jacobean� is called chiral anomaly �non�invariance
under chiral rotations�� The Jacobian of this chiral trans�
formation� de
ned as exp�iF	�h�� can be calculated �cal�
culation is given in Appendix A� and the result is�

F �

Z
dxdt

X
a

a



�a�x� t�

��a�x� t�

�x
� ��� �

The 
nal form of action after considering the Hubbard�
Stratonovich transformation� chiral transformation� and
the chiral anomaly �Jacobian� is

S�D � S�� ��
y� ��� � S���� �����

where S� �
R
dtdxL� is the free electron action de�


ned through ����� and the e�ective �uctuating phase
action� S� � S� � F � is equal to the sum of origi�
nal quadratic action term S� introduced by Hubbard�
Stratonovich transformation and the Jacobian of fermion
functional measure F due to the chiral transformation�
Here S� �

R
dtdxL� is de
ned through ����� and F �

in ��� �� The fact that the auxiliary 
elds �a can be
eliminated in terms of dynamical variables �a through
Eq� ���� makes S���� quadratic in �uctuating phase ��
An explicit expression of S���� can be found in Ap�
pendix B� In the representation ������ the noninter�

acting fermions ���x� t� represent the �system	� and the
�uctuating phases ��x� t� represent the �environment	�
Physically� the �uctuations of ��x� t� transmit the inter�
action between the original electrons�
Taking a functional integral over ���x� t� and ��x� t�

exactly reproduces the well�known anomalous power�law
correlation functions of the �D Luttinger liquid����� We
brie�y outline the procedure for calculating correlation
functions here� A more detailed calculation is given in
Appendix B� The Green function� two�point correlation
function� following from the Hubbard�Stratonovich and
chiral transformations �including Jacobian�� can be writ�
ten as

Ga���z�� z�� � �ih�a���z���ya���z��iS��y��
� �ih�a���z���ya���z��iS��y����
� �ih ��a���z�� ��ya���z��iS�� ��y� ��
�hei�a�z��i�a�z�iS��� ����

where zi � �xi� ti� for abbreviation� The 
rst factor�
ized term in ����� functional averaged over S�� is just
the free electron Green function� The second factorized
term� phase �uctuation average� which give the result of
the product of the last two terms in ������ can also be
calculated exactly� since the �uctuating phase action S�
in Eq� ����� has quadratic nature� After some manipu�
lations �details in Appendix B�� the single�particle Green
functions take the forms�

Ga�z�� z�� �
a




�

�a��

�
�a��
a��

�����
!�

a��
�a
��

����
�����

where

�aij � xij � avF tij � ia� sgn�tij�� �����

�aij � !� ia�xij � avF tij�� �����

aij � !� ia�xij � auvF tij�� �����

with xij � xi�xj � tij � ti�tj � � �  being in
nitesimal�
and !�� the ultraviolet cut�o� in the momentum� The
quantity uvF is the velocity of a �charge	 excitation with

u �
��
�hvF � g	�

� � g�� �
���


�hvF
� �����

The parameter �� the so�called anomalous exponent of
the �D Luttinger�liquid correlation functions� is related
to the strength of the interaction and is given by

� � ��	K �K � �	� �����

where K is the �sti�ness constant	 in traditional
bosonization scheme�

K �
p
�
�hvF � g	 � g��	�
�hvF � g	 � g��� �����

The value of K � � corresponds to noninteracting case�
and K � � represents the interaction being attractive
and K � � the repulsive� In principle� any �D Luttinger�
liquid N�point correlation functions can be calculated
by following the similar calculation for Green function
����� Taking the functional integral over �� and ��
we 
nd� for example� the ��point correlation function
D



 has the expression�
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where �ij � �ij � ij � are de
ned in ������������ The ��
point phase correlator� the last factorized term in �� ��
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useful for our later discussion to the problem of interchain
tunneling coherence� gives the result of the product of the
last two factorized terms in �����
We next focus on the central issue of the physical role

of a small interchain single�particle tunneling amplitude
t� in coupled Luttinger liquids� The action for this sys�
tem can be written as

S�D �
X
n

S�D�n � S�� ���

where S�D�n has the same decoupled � �� and �� expres�
sion in ����� except that the 
eld variables acquire ad�
ditional transverse dependence n which labels the trans�
verse chain �Luttinger liquid� number� The action� S��
for transverse nearest�neighbor interchain tunnelings is

S� �

Z
dx dt

X
n���a

t��
y
a���x� n� �� t���x� n� t�a�� �H�C�

�

Z
dx dt

X
n���a

t� ��ya���n
��x� t�
��a���n�x� t�

�e�i��a�n���x�t��a�n�x�t� �H�C� ����

In this representation it is clear that we have the system
of free fermions ���x� t� and the environment of the �uc�
tuating phases ��x� t� both living in every chain� The
transverse interchain tunneling action ���� then plays
the role of the coupling between the system and environ�
ment�

III� SCHWINGER�KELDYSH CLOSED�TIME
PATH FORMALISM

To address the question of interchain hopping coher�
ence� we shall use perturbative expansion in powers of
t� within the Schwinger�Keldysh double�time or CTP
formalism��� Let us discuss brie�y the basic idea of
this CTP formalism �see also Feynman�Vernon in�u�
ence functional formalism	��� This is the same formal�
ism that was utilized to study the two�level model������
In this formalism� the functional integral representation
is applied to study the time evolution of the electron
density matrix �R � j"�x� t�ih"�x� t�j rather than only

the states in Hilbert space j"�x� t�i where �H j"�x� t�i �
i�h��j"�x� t�i	�t�� Thus it is necessary to keep track of
the two times� one representing the evolution of j"�x� t�i
forward in time� and another representing the evolu�
tion of h"�x� t�j� which can be thought of as the evo�
lution of j"�x� t�i backward in time� In 
eld theory�
let us introduce j�t�x�i� a simultaneous common eigen�

state of all the Heisenberg 
eld operators ��H�x� t� at

time t� ��H�x� t�j�t�x�i � ��x� t�j�t�x�i� For a given
value of �x� t�� ��x� t� corresponds to a point in the

eld con
guration space� The Schr�odinger wave function
h�t�x�j"�x� t�i is therefore a functional of ��x� t�� In this

way one can express the time�dependent density matrix
element as a product of transition matrix elements from
ti to tf and the time reversed �complex conjugate� ma�
trix element from tf to ti times the initial density matrix
element�

R��f � �
�
f � tf � � h�f j �R�tf �j��f i

� h�f j �U�tf � ti� �R�ti� �U
y�tf � ti�j��f i

�

Z
D�iD��ih�ij �R�ti�j��ii

� h�f j �U�tf � ti�j�iih��ij �Uy�tf � ti�j��f i� �����

The spatial coordinate dependences are not shown ex�
plicitly in ������ but they can be recovered easily if one
wishes�
Introducing the path integral representation for each

transition matrix element in Eq� ����� results in the ex�
pression�

R��f � �
�
f � tf �

�

Z
D�iD��i J��f � ��f � tf j�i� ��i� ti�R��� ��i� ti�� ����

where J � the propagator of the density matrix� is given
by

J��f � �
�
f � tf j�i� ��i� ti�

�

Z �f

�i

D� e i
�h

R
dx dtL���

Z ��i

��
f

D�� e i
�h

R
dx� dt� L����� �����

and L is the Lagrangian density� Hence� to incorporate
both the statistical information carried by the density
matrix and the dynamic evolution governed by the La�
grangian� it is physically necessary to deal with the prop�
agation from ti to tf and then turns back to ti� forming
a double�time contour or CTP� Particularly� the inter�
ference between the forward� and backward�in�time 
eld
con
guration is related to the o��diagonal component of
the density matrix and then to the quantum coherence� It
is known that G��� the �� �component of Keldysh Green�
function matrix is directly related to the exact electron
density matrix��

R�x� x�# t� � �i�hG���x� x
�# t� t�� �����

The vanishing of the o��diagonal component of the den�
sity matrix is a characteristic of quantum incoherence�

IV� COHERENT�INCOHERENT INTERCHAIN
TUNNELINGS

The perturbative expansion in t� within the double�
time functional integral for Luttinger liquids leads to
the diagram shown in Fig� �� The dashed line connect�
ing points A and B represents the tunneling from the
chain n to the chain n� � that takes place at the space�
time point �xn� tn�� The top �bottom� solid lines with

�



the right �left� arrows represent the forward �backward�

time propagation of �� along the corresponding chains
n� n � �� and n � � The left wavy line represents
the correlation between the phases exp�i�a�n�xn� tn�� and
exp��i�a�n�x�n� t�n��� which mediates interaction between
electrons on the chain n� In principle electrons on the
same chain are correlated and are connected by wavy
lines� By taking the chain n � � as an example� there
are wavy lines �correlators� between points B and C� B
and C�� B and B�� C and C�� C and B�� and B� and C��
However� for our purpose� only the relevant wavy lines
are shown in Fig� ��
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��
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n �xn� tn� n � � �xn��� tn��� n � �

A B C D

A� B� C� D�

n �x�

n
� t�
n
� n � � �x�

n��� t
�

n��� n � �

FIG
 �
 Typical diagram of perturbative expansion in
power of t� within Schwinger	Keldysh double	time or
closed	time path


Strictly speaking the perturbative expansion in t�
within the closed�time path is carried out in the so�
call single�dot approximation�� in the inverse�self�energy
$� This is exactly the same approximation as for
the discussion�������� of renormalization�group relevant�
irrelevant condition for the t� except that in the latter
case only one forward�in�time path is considered� But
when the intrachain interaction is not too strong �i�e�� the
anomalous correlation exponent � is small enough� and
the interesting region of temperature or energy �� � EF �
is smaller than the e�ective tunneling amplitude �related
to the so�called �D crossover temperature T�D � te� �
�t�	E

�
F �

���������������� the perturbation t� is relevant�
i�e�� each order in t� carries a strongly divergent power of
the energy E��F ����� In principle� one should consider
all the higher�order diagrams� because they become of the
same order of magnitude� However� since we are only in�
terested in the behavior of the relative distance between
the interchain tunnelings for the forward� and backward�
in�time propagation in the neighboring�chain correlation
functions� the inclusion of higher order diagrams would
not change the power�law behavior� i�e�� the exponent of
this relative distance in correlation functions�
We next consider two extremal cases� noninteracting

and strongly interacting electrons� For noninteracting�
free electrons� the wavy�line correlator is equal to ��
so forward and backward electron lines are completely
independent� Each of these lines �see Fig� �a�� col�
lects the series in t� independently and produces an ex�
tended� coherent Bloch 
eld con
guration for the trans�
verse electron motion� On the other hand� the interac�
tion between electrons introduces correlation between the
forward� and backward�in�time electron interchain tun�
nelings� In the extreme case of very strong binding� the

wavy lines tie the two interchain tunneling events� one
forward�in�time and the other backward�in�time� very
tightly into a pair so that �xn� tn� � �x�n� t

�
n�� The

closely bound pairs of forward� and backward�in�time
electron tunnelings are called �collapsed blips	�� for the
two�level model	�� When similarly tightly bound pairs
of forward� and backward�in�time electrons tunnel be�
tween chains for all neighboring chains as shown in Fig�
�b�� we say that the evolution of the 
eld con
gura�
tion �a���n�x� t� and its complex conjugate component
�ya���n�x� t� form an independent bound pair combination

�ya���n�x� t��a���n�x� t�� In this case� the evolution of the
probability from an initial 
eld con
guration to a 
nal

eld con
guration is equal to the sum of all possible evo�
lutions of the pair 
eld con
guration �ya���x� t��a���x� t�
rather than the square of the transition amplitude �the
square of the sum over all possible evolutions of the 
eld
con
guration �a���n�x� t�� from initial to 
nal 
eld con�

guration� In other words� the electron 
eld density in
Luttinger liquids� �a�n�x� t� �

P
� �

y
a���n�x� t��a���n�x� t��

rather than the electron 
eld variable �a���n�xn� tn�� hops
from the chain n to n� � �see Fig� �� This regime cor�
responds to the incoherent tunneling between the chains�
This picture of incoherence is similar to the case for the
two�level model	��
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n n � � n � �

n n � � n � �

n n � � n � �

�a�

�b�

FIG
 �
 �a� Coherent propagation of the electron �eld �n�
uncorrelated interchain tunnelings for the forward and back	
ward electron propagations in the case of noninteracting elec	
trons
 �b� Incoherent propagation of the electron probabil	
ity density �n � �yn�n� tightly bound� paired forward	 and
backward	in	time interchain tunnelings in the extreme case
of strongly interacting electrons


We give our criterion of coherent�incoherent transition
in the following� We propose that the incoherent regime
takes place when the integral of neighboring�chain corre�
lators

R
d�xn � x�n� d�tn � t�n� over the relative distance

between the interchain tunnelings for the forward and
backward propagation starts to converge at the upper
�infrared� limit	�� When the integral is convergent� the
interchain tunneling events are bound into pairs called
�collapsed blips	� which corresponds to the incoherent
regime� If the integral does not converge� then the
regime is coherent� Because the Luttinger�liquid correla�
tors are power�law� it is straightforward to 
nd a condi�

�



tion for the convergence in terms of the Luttinger�liquid
exponents� Taking a � � branch electrons as an ex�
ample� tracing out functional average of the correlator
hexp�i�
�n�zn
��� i�
�n�zn�� i�
�n�z

�
n�� i�
�n�z

�
n
���i

over the environment degree of freedom �n and using
the infrared �large�distance� asymptotic forms of vari�
ables �ann� � ann� � �xnn� � auvF tnn��� we can write the
relevant integral expression following from the expression
of ���� as� Z

d
nn�d
�
nn�

�
nn�
�
nn��

�
� �����

The integrand in ����� is a square of the relevant relative
distance dependence in ���� due to the correlator con�
tributions from both the wavy lines of the neighboring
chains n and n � �� The spin�charge separation prob�
lem is not important to the issue of convergence of the
integral expression ����� at the upper limit� As long as
the spin and charge velocities are 
nite� they only intro�
duce a 
nite factor��� The convergence of the asymp�
totic integral ����� hence gives � � � as the condition
for the regime of the incoherence phase� This result is
di�erent from the result obtained before������ where the
con
nement of coherence �incoherence regime� was found
to occur at � � �	� The condition for the t� relevance
in renormalization�group sense is also a condition on the
exponents and is known�� to be irrelevant for � � � and
relevant for � � �� Our result indicates that the bound�
ary value that separates coherent and incoherent regimes�
�c�ic � �� is the same as the value that separates relevant
and irrelevant regimes� Thus the relevant but incoherent
regime is not possible�
Our criterion of coherence�incoherence is formulated

in exactly the same way as for the two�level model	�� ex�

cept there is no spatial coordinate x in the latter case�
The closely bound pairs of forward� and backward�in�
time electron tunnelings are called �collapsed blips	��

for the two�level model� It is the extra dimension x that
causes the di�erence between the results for the two�level
model and the coupled Luttinger liquids�

V� CONCLUSION

In conclusion� we have introduced the functional
bosonization approach which transforms the �D Lut�
tinger liquid into a representation of the �system	 of
free electrons and the �environment	 of the �uctuating
bosonic phase� The power�law correlation functions of
the �D Luttinger liquid are obtained straightforwardly
and reproduced exactly by a functional average over free
fermion action and �uctuating chiral phase action� We
have examined the system of Luttinger liquids coupled by
small transverse interchain single�particle tunneling t� in
terms of the CTP formalism� We 
nd that the interchain
tunneling t� is relevant and coherent for � � � and irrel�
evant and incoherent for � � �� There is no window for
relevant but incoherent tunneling between �D Luttinger
liquids�
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APPENDIX A� CHIRAL JACOBIAN

In this Appendix we calculate the Jacobian ��� � of
the chiral transformation ����� Let us de
ne the action
S� as the sum of the 
rst and third terms in �����

S� � S���
y� �� �

Z
dtdx

X
a��

�a�x� t��a�x� t�� �A��

Then we de
ne

eiF ����h � Jacobian of the chiral transformation

�

R D�yD� eiS���y������hR D ��yD �� eiS�� ��y� ����h
� �A�

Instead of calculating the Jacobian directly� let us cal�
culate its variation with respect to a variation ��a� By
using the so called �point�splitting	 method� the func�
tional derivative of functional F with respect to �a from
�A� is given by

�F

��a
� lim

�x��t��

R D�yD� P
� �

y
a���x � �x� t� �t��a���x� t�e

iS���
y������hR D�yD� eiS���y������h �A��

� lim
�x��t��

X
�

h�ya���x� �x� t� �t��a���x� t�iS���y����

� lim
�x��t��

X
�

h ��ya���x� �x� t� �t� ��a���x� t�iS�� ��y� �� e�i��a�x
�x�t
�t��a�x�t� �A��

�



The advantage of Eq� �A�� is that� after we make the chiral transformation ���� on S� �A�� to obtain Eq� �A��� the
Jacobian of the transformation cancel out in numerator and denominator of the functional average expression �A���
The �D free fermion Green function is easy to obtained�

h ��a���x� t� ��ya���x�� t��iS�� ��y� �� � i

Z
dkd�

�
��
eik�x�x

��i	�t�t�

� � avF k � i� sign�avfk�
�A��

�
�


i

�a
�x� x��� avF �t� t�� � ia� sign�t� t��

� �A��

Making the expansion on the phase di�erence term of �A��� �a�x � �x� t � �t� � �a�x� t� � ��x�a��x � ��t�a��t �
O��x�� �t��� and using �A�� for the free fermion Green function� we 
nd

�F

��a
� �i lim

�x��t��

Z
dkd�

�
��
e�i�k

x�a�x
i�	

t�a�t
O��x

���t�

� � avF k � i� sign�avfk�
� �A��

Changing the variables k� � k��x�a� �
� � ���t�a� per�

forming the frequency integration� and then taking the
�x� �t�  limits� we end up with the expression that

�F

��a
�

Z
dk�



nF �avF �k

� � �x�a��� �A��

Expanding the Fermi distribution function and dropping
the term of total number of fermions	�� we 
nally get

�F

��a�x� t�
�

a



�x�a�x� t�� �A��

Since the auxiliary bosonic 
eld �a is� from ����� propor�
tional to the phase 
eld �a� we arrive at the result that

the chiral Jacobian� the extra contribution to action due
to the chiral transformation ����� is given by ��� ��

APPENDIX B� CALCULATIONS OF
CORRELATION FUNCTIONS IN �D

LUTTINGER LIQUID

In this Appendix we calculate correlation functions in
�D Luttinger Liquid� Let us 
rst 
nd the explicit expres�
sion for the �uctuating phase action S����� After substi�
tuting ���� into ��� � and ����� and Fourier transform�
ing to momentum space� we 
nd

S���� � F ��� � S����

�
�h


vF

Z
dkd�

�
��
��
��k����� ����k�����

�� ��� � vF k�vF k  
 �� � vF k�vF k

�

�

�hvF

�g�	 � g���

�
g	�� � vF k�

� �g���� � v�F k
��

�g���� � v�F k
�� g	�� � vF k�

�

���
�
�k� ��
���k� ��

�
�

�
��h
i

Z
dkd�

�
��
��
��k����� ����k����� �M�k� ��

�
�
�k� ��
���k� ��

�

� � �h

i
��� �M�� �B��

where the matrix �M given by

�M �

�
�M



�M
�

�M�

�M��

�
� �B�

with matrix elements�

�Maa �
�i


vF ��g�	 � �g���
�� � avF k�

���g	�� � avF k�� a�u� � ��vF k�� �B��

�M�aa �
i


vF ��g�	 � �g���
�g��� � vF k��� � vF k�� �B��

and normalized coupling constants�

�g� �
g�


vF �h
� �g	 �

g	

vF �h

� �B��

The velocity of charge sector u is de
ned in ������

Now we are in the position to calculate the correla�
tion functions� Let us calculate the single�particle Green
function 
rst� Fourier transforming the phase �uctuation
average term in �A��� we 
nd

�



hei�a�z��i�a�z�iS��� �
R D�a exp

h
i
R

dkd	
���� �a�k� ��

�
eikx��i	t� � eikx��i	t�

�
� iS���a�h

i
R D�a exp�iS	��a�	�h�

� �B��

Using the identity

e�
�
�
��� �M��
�B��� � e�

�
�
��� �M��B� �M��� �M��B�
 �

�
�B� �M��B�

�B��

with the de
nition

�B� �� �
Z

dkd�

�
��
�b
��k����� b���k�����

�
�
�k� ��
���k� ��

�
�

�B��

we obtain

hei�a�z��i�a�z�iS��� � e
�
�
�B� �M��B� �B��

where the transpose of B is�

BT �k� �� �

�
�b�k� ���  � for a � �
� � b�k� ��� for a � � �B� �

with

b�k� �� � e�ikx�
i	t� � e�ikx�
i	t� � �B���

The inverse of matrix �M �B� can be calculated and the
result is

�M�� �

�
� �M���

 � �M���
�
� �M����
 � �M�����

�
� �B��

with

� �M���aa �

ai

k

�
�

� � auvF k
� �

� � avF k

�

�

i

k
�

�
�

� � uvF k
� �

� � uvF k

�
� �B���

� �M����aa �

i

k
�

�
�

� � uvF k
� �

� � uvFk

�
� �B���

The parameter �� which turns out to be the anoma�
lous exponent of the Green function in �D Lut�
tinger liquid� is de
ned in ������ Another ex�
ponent of correlation function � which shows up�
for example� in the ��point correlation function

h�
���z���y
���z�������z���y����z	�iS��y��� has the ex�
pression

� �
�

�

�
�

K
�K

�
�B���

where K� the �sti�ness constant	� is de
ned in ������

From �B� � and �B���� we 
nd that the exponent

��	��B� �M��B� of �B�� only picks up one of the diag�

onal elements � �M���aa of matrix �M���

hei�a�z�i�a��iS��� � expf�

�B� �M��B�g

� exp

�
i


Z
dkd�

�
��
��� cos�kx� �t��� �M���aa

	
� �B���

Following identity is very useful in our calculation�

i


Z
dkd�

�
��

�
�� cos�kx� �t�

k�� � avF k � i sign�ak��

�

� lim
���

a


ln

�
!� ia�x� avF t�

!

�
� �B���

In the derivation of the identity �B���� we regulate the
integral at large momenta by introducing a convergence
factor exp��!jkj�� where !�� is the ultraviolet cut�o��
As the physics does not involve large momenta� that is
large energies� the introduction of a cut�o� will not make
any di�erence and� at the end of any calculation� the
!�  limit can be performed� Using Eq� �B���� one can
easily 
gure out from �B��� and �B��� that

hei�a�z�i�a��iS���

�

�
!� ia�x� avF t�

!� ia�x� auvF t�

����

�
�

!�

�!� i�x� uvF t���! � i�x� uvF t��

����
� �B���

Hence� by means of ����� �A�� and �B���� the single
particle Green functions take the forms of ������ One
can see that the parameter � ����� indeed is the anoma�
lous exponent in Green function ������
The similar procedure of calculating single particle

Green function could be applied to compute N�point
correlation functions� We consider the ��point correla�

tion function h�
���z���y
���z���
���z���y
���z	�iS��y��
�� �� which is useful in the discussion of coherent�
incoherent transition� The free ��point correlation func�
tions in �� � can be easily computed and is equal to
the product of two free fermion Green functions de
ned
in �A��� The phase �uctuation average has the simi�
lar patterns as that in �B��� Therefore� instead of �B���
�B� � and �B���� we have�

hei����z�����z�
���z�����z�iS��� � e
�
�
�B� �M��B�

�B���

�



where BT �k� �� � �b�k� ���  �� with

b�k� �� � e�ikx�
i	t� � e�ikx�
i	t�

�e�ikx�
i	t� � e�ikx�
i	t� � �B �

The matrix �M and �M�� are de
ned as before� Follow�
ing the same procedure of deriving single particle Green
functions ������ we 
nd the expression ���� for the ��
point correlation functions D���





�z�� z�� z�� z	�� These
correlation functions are reproduced exactly as those in
Refs������

APPENDIX C� COHERENCE�INCOHERENCE
OF TWO�LEVEL MODEL

The attractiveness of our approach for the coher�
ence�incoherence condition of single�particle interchain
tunnelings between Luttinger liquids is that it is formu�
lated in exactly the same way as in the two level model�
except there is no spatial coordinate x in the latter case�
We present in this Appendix how the procedure works for
the two�level model� The characteristic Hamiltonian for
the two�level system coupled to a dissipative environment
can be written as follows������

HTLM � ��


�h��x �

X
i

�
�


mi�ix

�
i �

�

mi
p�i

�

�
�


�z
X
i

Cixi� �C��

Here �%s are the Pauli matrices� Ci is the coupling
strength to the ith oscillator� and mi� �i� xi and pi are
the mass� frequency� position and momentum of the ith
oscillator� respectively� The 
rst term in Hamiltonian
�C�� describes a quantum particle� the system� tunnel�
ing between two states connected by a matrix element
�� The second term in �C�� represents the environment
of a bath of oscillators� The third term in �C�� describes
the interaction between the system and the dissipative
environment with the coupling strength Ci � The bath
of harmonic oscillators has distributed frequencies� We
consider the Ohmic bath� for which the spectral density�
J���� of the environment is given by

J��� � 




X
i

C�
i

mi�i
��� � �i� � 
�h��� e

�	�	c �C�

where �c is a cuto� frequency and �� is a positive con�
stant measuring the strength of the coupling to the envi�
ronment and the stronger the interaction with the envi�
ronment� the larger the value of �� �
If initially the particle is in one of the two states� say�

in the �z �� state for all t �  � j��t �  �i � j�z � �i�
then in the absence of interaction with the environment�
i�e� Ci �  ��� �  �� the wave function according to el�
ementary quantum mechanics can be easily written as
follows�

j��t�i � �p


h
ei��ei�t��j�x� �i� ei��e�i�t��j�x� �i

i
�

�C��

In this case� the relative phase between these two eigen�
states remains well de
ned inde
nitely and the proba�
bility to 
nd the particle in the other state oscillates in
time� p�t� � �h�z�t�i � ��	 � �� � cos�t�	� When
interaction with the environment is su�ciently strong
�when �� 	 �	� � this probability does not oscillate� but
changes in time exponentially� saturating at the proba�
bility ��� p�t� 
 �

� �� � e��t�� This behavior is called
incoherent� because it corresponds to a classical� rather
than quantum�mechanical� coupling of the two states�
At a stronger interaction with the environment �when
�� 	 ��� the particle gets inde
nitely localized in the ini�
tial state� and does not make a transition to the other
state at all� In this regime� � is irrelevant������
We shall apply perturbation theory in the tunneling

matrix element � rather than in the system�environment
interaction� To diagonize the last three terms in HTLS�
it is simply necessary to shift each oscillator through a
distance �z�xi� where �xi � � �

�
Ci

mi	�i
� The appropriate

unitary operator is

�U � exp



� i


�z
X
i

Ci
mi��i

�pi

�
� �C��

The transformed Hamiltonian

H �
TLM � �UHTLM

�U��

� ��


�h���
e�i� � h�c�� �Hoscillators �C��

where & �
P

i
Ci

mi	�i
pi� and �� � ��x � i�y�	� The tun�

neling operator between the two states has been replaced
by an operator which creates and destroys excitations of
the oscillator bath� as well as changing the state of the
spin� The two�point correlation function of �
e�i� can
then be found�

h�
e�i��t��ei���i � exp

�
�
Z �

�

�� e�i	t

��
J���

	

� exp

�
���

Z �

�

�� e�i	t

�
e�	�	c

	

 ei��� ��ct�

���� � �C��

Next we discuss the coherent�incoherent transition for
the two�level model within the Schwinger�Keldysh CTP
formalism� Suppose that the top and bottom diagrams in
Fig� ��a� represent one of the possible paths forward� and
backward�in�time respectively in the two�level model�
The paths can jump only between two discrete values �
and � which correspond to the state in the right and left
well or �z ���� respectively� One can visualize the dou�
ble path integrals in CTP formalism as a single integral

�



over a single path �see Fig� ��b�� that jumps between the
four states corresponding to f�� �g� f�� �g� f�� �g� f�� �g
�the 
rst element in the braces f g is the system state
in the forward�in�time path and the second element is
the system state in the backward�in�time path�� Blips�
as shown in Fig� ��b�� are the periods when the sys�
tem is in either of two o��diagonal states correspond�
ing to f�� �g or f�� �g state� It was argued�� that for
�� � �	 from below� only blips of e�ective vanish�
ing length� that is �collapsed	 blips� contribute� In this
case� interactions among di�erent collapsed blips van�
ish and noninteracting�blip approximation����� becomes
exact� The probability or the time dependent expec�
tation value of �z� P �t� � h�z�t�i � �p�t� � ��	 �
exp��
��t	��c��� has pure damped behavior without
any oscillation� which is just the signature of incoherence�
The fact that blips collapse and become noninteracting
is related to the situation that interference becomes neg�
ligible� The particle states and their complex conjugates
in two di�erent time branches of the CTP are bound
and hop together� i�e�� the change of the state from � to
� in one of the two time branches immediately causes
the corresponding state of the particle in the other time
path changes from � to � state� Therefore the evolution
of probability density from an initial state to a 
nal state
is equal to the sum of all possible evolutions of the bound
pairs� collapsed blips� rather than the square of the tran�
sition amplitude �the square of the sum over all possible
evolutions of the wave function� from initial to 
nal state�
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FIG
 �
 �a� Possible forward	 and backward	in	time paths
for the two	level model
 �b�The corresponding visualized sin	
gle path
 �c� Coulomb charges lying in the Schwinger	Keldysh
CTP and under certain condition charges at di�erent branches
of the CTP pairing into noninteracting or independent neutral
dipoles with vanishing dipole moments


The formation of �collapsed	 blips in two�level model
can be understood in terms of Coulomb gas �CG������

language� i�e�� Coulomb charges lying in the Schwinger�
Keldysh closed�time path or �double�time	 contour� In
terms of CG language� the times spin �ips correspond to
the locations of charges� We assume that the time mo�
ment at which spin �ips from � to � �kink� corresponds to
the position of positive charged particle in a �D space and

the moment from � to � �anti�kink� corresponds to that of
negative charged particle� The locations of charges cor�
responding to the times that spin �ips in Fig� ��a� in the
CTP� for example� are shown in Fig� ��c�� Under certain
conditions �i�e�� when particle�environment interaction is
strong enough in the two�level model�� the charges at
di�erent branches of the CTP pair into noninteracting
or independent neutral dipoles �see Fig� ��c�� with van�
ishing dipole moments �vanishing distances� t � t��� In
this case� the CG is said to be in the incoherent �con�

ned� phase� These independent dipoles with vanishing
dipole moments develop from the short distance singu�
larity �when approaching from the plasma phase� of the
attractive interaction between nearest�neighbor opposite
charges in two di�erent time branches of the CTP� The
formation of these �collapsed	 dipoles play a role simi�
lar to the �collapsed	 blips in the dissipative two�level
model� where particle states and their complex conju�
gates in two di�erent time paths are tightly bound and
hop together� This corresponds to the condition for the
disappearance of coherence�
We next discuss the condition of coherent�incoherent

transition for the two�level model in a similar way as
in the case for the interchain tunneling between coupled
Luttinger liquids� We propose that the incoherent regime
takes place when the integral

R
d�t� t�� over the relative

time distance between the spin �ips for the forward and
backward propagation starts to converge at the upper
�infrared� limit� The N�point correlation function can be
found by the similar procedure for obtaining Eq� �C���
Tracing out the environment degrees of freedom� pi and
xi� we 
nd that the N�point correlator has the power law
dependence of �� on the relative time distance between
the spin �ips for the forward and backward propagation�
We write the relevant integral expression as the following�Z

d�t� t��

�t� t�����
� �C��

The convergence of the integral �C�� at large distance
when approaching from the dipole phase or the short
distance singularity of the integral �C�� when approach�
ing from the plasma phase corresponds to the incoher�
ent regime� Therefore the regime� �� � �	� in which
the blips �collapse	 or Coulomb charges in di�erent time
branches become tightly bound into independent dipoles
with vanishing dipole moments �i�e�� interference become
negligible�� corresponds to the regime of incoherence in
the two�level model�
The picture of the Coulomb charges lying in the

Schwinger�Keldysh closed�time�path and tending to re�
organize as a dipole gas has been used to describe the
tunneling statistics of Luttinger liquids through narrow
barriers��� It was shown that an independent or noninter�
acting dipole approximation gives a Poisson distribution
for the locations of the dipole centers of mass� which cor�
responds to the situation when the tunneling events in
either direction are independent or shot noise is uncor�
related� The independent or noninteracting dipoles with

� 



vanishing dipole moments �vanishing distances�� or with
the positions of the charges in forward� and backward�
time path and dipole centers being not distinguished in

the low�frequency range �� � �� � e�V	�h� in Ref��� are
similar to the �collapsed	 blips in the two�level model�
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