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Abstract. Starting from the full Schrédinger equation for a system and an environment (a
detector), we present a heuristic derivation of the stochastic Schrédinger (master) equation for
a mesoscopic measurement model to illustrate the essential physics of the quantum trajectory
theory. This mesoscopic model describes a two-state quantum system, an electron coherently
tunneling between two coupled quantum dots, interacting with an environment (a detector),
a low transparency point contact or tunnel junction. Then we provide a connection and a
unified picture for the quantum trajectory approach and the master equation approach. We
show that the master equation for the reduced or “partially” reduced density matrix can be
simply obtained when an average or “partial” average is taken on the conditional, stochastic
density matrix (or quantum trajectories) over the possible outcomes of the measurements.

1. Introduction

The theory of quantum trajectories or stochastic Schr édinger equations has been developed
in last ten years mainly in the quantum optics community to describe open quantum system
subject to continuous quantum measurements. But it was introduced to the context of solid-
state mesoscopics only recently [1, 2, 3, 4]. Different authors, however, gave somewhat
different derivations for the stochastic equations. In Refs. [1, 2] the prescriptions for the
quantum trajectories (or selective, conditional, stochastic state evolution) were derived based
on the Bayesian formalism, while they were derived in Refs. [3, 4] starting from unconditional
master equation. In addition, the interpretations along with the derivations do not seem
transparent enough. Hence, many aspects of the theory are still poorly understood in the
condensed matter physics community. The main purposes of this paper are (i) to present a
simple, heuristic derivation for the same mesoscopic model to illustrate the essential physics
of the quantum trajectories. (ii) to provide a unified picture for the quantum trajectory
approach and the master equation approach of reduced or “partially” reduced density matrix.
Here we refer to the master equation approach of the “partially” reduced density matrix as
the approach recently developed in Refs. [5, 6, 7], mainly for the purpose of reading out an
initial state of a quantum bit (qubit). We show that the master equation of the reduced or
“partially” reduced density matrix can be obtained as a result of ensemble average or “partial”
average on the conditional, stochastic master equation of the density matrix (constructed from
the conditional system state vector) over all possible detection records.

2. M esoscopic measurement model and quantum trajectories

2.1. Coupled-quantum-dot and point-contact model

The mesoscopic measurement model considered in Refs. [1, 2, 3, 4, 5] describes a quantum
system, an electron coherently tunneling between two coupled quantum dots (CQD’s),
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interacting with an environment (a detector), a low transparency point contact (PC) or tunnel
junction. The Hamiltonian describing the whole system can be written as [1, 2, 3, 4, 5]

H =Hcqp + Hee + Heoup 1)
where
Heqn = h [wch{cl + LUQC;CQ + Q(cJ{cQ + cgcl)} , (2)
Hece =h), (w,faTLkaLk + w,fa%ka}gk) +> (T,;*anLkaRq + qua}{qaLk) ,(3)
k k,q
%coup = Z CJ{Cl (Xl)zanLkaRq + quazzqaLk) . (4)
k,q

Heqp represents the effective tunneling Hamiltonian for the measured two-state CQD
system (mesoscopic charge qubit). The tunneling Hamiltonian for the PC bath (detector)
is represented by Hpc. Here ¢; (c}) and hw; represent the electron annihilation (creation)
operator and energy for a single electron state in each dot respectively. The coupling between
the two dots is given by 1. Similarly, apx, age and hw?, hwf are respectively the electron
annihilation operators and energies for the left and right reservoir states at wave number £.
Equation (4), H.oup, describes the interaction between the bath (detector) and the CQD qubit
system, depending on which dot is occupied. When the electron in the CQD’s is located in
dot 1, the effective tunneling amplitude of the PC detector changes from T}, — Tyq + Xkq-

2.2. Continuous measurements and quantum trajectory

We will derive, starting from the full Schrddinger equation for the system and environment
(bath), the stochastic Schr odinger equation which models the evolution of the CQD system
conditioned on continuous in time measurements of the PC bath by a detection device. We
follow closely the derivation [8, 9, 10] of the stochastic Schr’édinger equation for an atom,
driven by classical radiation fields and interacting with the vacuum radiation field, for the
CQD/PC model. The basic idea is as follows. Suppose that the combined state |¥) of the
system and the bath is initially disentangled, |¥(0))=|(0))|05). Here the initial “vacuum”

state |0) of the PC bath is the state where the energy levels in the source (the left PC reservoir)
and drain (the right PC reservoir) are filled up to the Fermi energies (chemical potential) s,
with electron number nY, and iz with electron number n%, respectively. We represent the
Hilbert space of the PC bath states as the number or Fock states |np) of the left and right PC

reservoirs. Since the operator n;, + nyp = Zk(azkaLk + aJ]r{kaRk), commutes with the total
Hamiltonian Eq. (1), the total electron number of the PC is conserved. We can thus write
05) = [n%)In%) and |ng) = |n% — n)|n% + n), being the states simultaneously having n
addition electrons in the drain continuum, and n holes in the source continuum. The effect
of H..up Makes the state of the CQD qubit system and the state of the PC reservoirs become
entangled so that the total state |¥) no longer factorizes as it did at ¢ = 0. For the CQD/PC
mesoscopic model, the observed quantity or physical observable is the number of electrons
tunneling through PC. Hence we can expand the total state on the orthonormal Fock (number)
state basis of the PC bath as

[T(1)) =D Balt) [Wu(t)) ). ()

Here we have chosen the CQD qubit system state |¢,,(¢)) to be normalized, but they are,
in general, not orthonormal. This is related to the fact that the indirect measurement on
the CQD qubit system, discussed later, is not projective. We consider the case that the
measurement is performed and repeated within a time interval d¢ much smaller than the
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typical system evolution or response time. Hence, the system is effectively continuously
monitored. According to the “orthodox” quantum theory of measurements, the possible
detector outcomes are the integer eigenvalues of the electron number operator in the right
reservoir of the PC at time ¢ + dt. Moreover, subsequent to the detection, the bath part of the
total wave function |¥ (¢ + dt)) collapses to the corresponding eigenstate. That is to say when
the measurement identifies the state of the PC bath to be in the particular eigenstate |ng), the
CQD system is in the corresponding pure state |¢)(¢ + dt)) = |1, (t + dt)). The probability
for this to happen is equal to |3, (¢ + dt)|*. The normalized system state, conditioned on
the measurement result just obtained, then serves as the initial state for the next evolution and
measurement time interval dt. Thus, according to the measurement record of each experiment
run, we obtain one particular evolution of system state |¢)(¢)) as a result of a continuous
projection of the total state |(¢)) on one of the eigenstates |np). Such an evolution | (t))
is called a quantum trajectory and its nature is generally stochastic. The stochastic element
in the quantum trajectory corresponds exactly to the consequence of the random outcomes of
the measurement record.

It is important to realize that the experimenter never makes a direct measurement on
the system of interest. Rather, the experimenter observes the number of electrons tunneling
through the PC. In the mesoscopic model, the CQD qubit system interacts with the PC
reservoirs and their quantum states are entangled. The projective measurement made on the
PC bath, however, enables us to disentangle the system and the bath states. We may think the
effect on the qubit system state |¢)(¢)) is an indirect result of the projective measurement on
the PC bath, and we may model it in terms of measurement operators M,,(dt) acting on the
qubit system state alone. However, such an effective measurement on the qubit system state is,
in principle, not projective. If the initial normalized state of the system is |¢)(¢)) immediately
before the measurement, the unnormalized state of the measured result being n at the end of
the time interval [t, ¢+ dt) of the measurement can be written as |, (¢t +dt)) = M, (dt)|1)(t)).
The corresponding probability and the normalized final state of the system are respectively

Bt + db)|? = (() | M (dt) My, ()b (1), (6)
[ (£ + b)) = My ()]0 (2)) /] (0o ()| ML (dt) M., () 1)(2)). (7)

Here the measurement operator satisfies the completeness condition 3, M (dt) M, (dt) = 1
which is simply a statement of conservation of probability. The question now is to find
|t (t + dt)) or the measurement operators M, (dt) for the CQD/PC model given that | (¢))
is known at time ¢.

2.3. Jump-free evolution

First, let us consider the case that |¥(0))=|¢(0))|05), and the measurement outcome that
no electron tunneling through PC is detected up to time ¢. We treat the sum of the tunneling
Hamiltonian parts in H p and H ..., as the interaction Hamiltonian ;. Then the dynamics of
the entire system in the interaction picture, is determined by the time-dependent Hamiltonian

[3]
Hi(t) =Y (T3, + Xpgcier) alparge@ = + H. 8
() => kg T XkgC1C1 ) QL QRgE + H.c., (8)
k.q

where H.c. stands for Hermitian conjugate of the entire previous term. The total wave function
of the entire system in the interaction picture satisfies

D)y =~ Hr()0))r — 2 Hi(r) [ e Hy ) (). ©)
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Equation (9) is exact and can be derived from the Schr odinger equation. We consider the
measurement scheme of counting the number of electrons through the PC. The total wave
function in the interaction picture can be expanded in terms of the Fock states of the bath as
in Eq. (5) with |¢,,(t)) — |¢n(t))1. The effect of zero-count measurement results is that the
total state vector |W(¢)); is repeatedly projected into |0z) and is renormalized. Hence during
the zero-count interval, the state vector |¢(¢)); of the system will be in |¢(t));. Using Eq.
(9) and carrying out the projection onto |0g), we find for the evolution of the unnormalized

state [/ (t)); = Bo(t) |0 (1)) as follows:
d -
Sho(0)r = — = [ at 3Tt Xiuna) Tia + 1)

X 0(pur — hwk) O(hwl — pug)e @ <D g0 ('), (10)

where n; = ¢l¢y, and 6(z) = 1 for z > 0 and 6(x) = 0 for 2 < 0. The first term in Eq. (9)
does not contribute because (0g|H;(t)|05) = 0. Under the assumption that the correlation
time of the bath, 75 ~ %/(11, — pr), iIs much shorter than the typical time constant expected
from the system, and provided that ¢ > 75, we can replace |1 (t')); by |¢o(t)); in the
integrand of Eq. (10) and extend the lower limit of the time integration to infinity after the
change of variable 7 = ¢ — #'. This assumption and resulting simplifications to the integrand
of Eq. (10) are known as the Born-Markov approximation.

Carrying out the integration and going back to the Sch’édinger picture, we find that Eq.
(10) becomes

S100(6)) = 3 Hoanldo(0) — 5(T* + X'm)(T + Xn)ldo(t)), (11

where the parameters 7 and X are given by D = |T|? = 2weVgrgr|Tool?/h, and D' =
T + X? = 2meVgrgr|Too + Xoo|?/h. Here D and D’ are average electron tunneling rates
through the PC barrier without and with the presence of the electron in dot 1 respectively,
and eV = up — pg is the external bias applied across the PC. To arrive at Eq. (11),
energy-independent tunneling amplitudes represented by Ty and o9, and energy-independent
density of states of the reservoirs represented by ¢; and g are assumed. Requiring that the
state |o(¢)) remains normalized so that d[{vo(t)|10(t))]/dt = 0, and with the help of Eq.

(11) and the relation |t (%)) = Bo(t)|t(t)), we obtain

dfo(t)/dt = —=P1(t)Bo(t)/2, (12)

where Py (t) = ((T*+X*ny)(T + X'ny)) and the expectation value (- - -) is taken with respect
to the normalized state |¢y(¢)). This then yields, from Eq. (11), the following evolution
equation for the normalized state |¢,(¢)) of the CQD qubit system under the condition that no
electron through PC is detected:

ho(6)) = 1 Hoaplta(t))— (T m)(T+Xm) Rio(1))+ 5P (]4o(1)-(13)

We see from Eqg. (13) that when the measurement result is null (no electron detected), the
system changes infinitesimally, but not unitarily. The non-unitary nature of the evolution
expresses the fact that the projective measurement on the bath with results of no electrons
detected still have effects on the system. In addition, Eq. (13) is non-linear because of the
presence of the expectation value term P, (¢), which ensures that the system state remains
normalized.



Quantum trajectories and quantum measurement theory in solid-state mesoscopics 5

2.4. Quantum jumps

Next we consider the case that electrons passing through the PC are detected. The probability
that detection of electron occurs in time interval [¢,t + dt) is equal to the difference between
the probability that no electron was detected up to time ¢ and that up to time ¢ + dt. This can
be directly found from Eq. (12) with the result:

|Bo () — [Bo(t + dt)|> = |Bo(t) Py (t) dt, (14)

where the relation 2(dSy/3) = 2d(Infy) = d(In33) = dB2/pE has been used. If the
detection intervals dt are chosen to be sufficiently short for the detection probability to be
small, the probability of two and more electrons could have been detected may be neglected.
Hence in each infinitesimal time interval dt, either measurement result is null (no electron
detected) or there is a detection of an electron through the PC barrier. At randomly determined
times (conditionally Poisson distributed), when there is a detection of an electron, the system
undergoes a finite evolution (or a sudden jump due to collapse), called a quantumjump. Given
that |W(¢)) = |1b0(t))|0p) at time ¢ and a detection result of an electron at time ¢ + dt, the total
state vector | U (¢ + dt)) collapses to the state | (¢ + dt))|15). We know that the probability
for the detection to occur is

Bi(t+ dt)|* =1 — |Bo(t + dt)|> = Pr(t)dt. (15)

This is obtained from Eq. (14) by setting | 3o(¢)|* = 1 since the initial state |1(¢))|05) at time
t, as a result of previous measurement, should be normalized. The question now is simply to
find the normalized state | (¢ + dt))|15) of the system. It is sufficient to obtain this state to
the first order in interaction Hamiltonian. We find

|1 (t+dt)) = (T + Xna)|tho(2)) /) Pr (). (16)
Equation (16) can also be obtained by means of effective measurement operators. In this
case, only two of them, A, (dt) for n = 0, 1, are needed in each quantum-jump measurement

interval. Using the relations, d|v(t)) = |4(t+dt)) — |4 (t)) and |4, (t+dt)) = M, (dt)|(t)),
we find from Eq. (11) that

My(dt) =1 — [(i/h)Heaqp + (1/2)(T* + X*ny)(T + X ny)]dt. (17)
The measurement operator M (dt) can be obtained using Egs. (15) and (6) as
M, (dt) = (T + X ny)Vat. (18)

The appearance of \/dt in M, (dt) ensures that only a finite number of detections can occur
in a finite time interval, since the probability of a detection result is proportional to dt. Then
from Eq. (7), the normalized state after a detection Eq. (16) results. One can check that the
measurement operators satisfy the completeness condition 3", M (dt) M, (dt) = 1, to first
order in time dt.

Right after the detection, the PC reservoirs are immediately reset back to its vacuum
state. That is, the detected electron which has tunneled into the right reservoir is destroyed in
the electric circuit of the detection device, and an electron from the outer circuit immediately
flows to the left reservoir to fill up the hole in the measurement process. So energy levels
in the source and drain are again filled up to the Fermi energies (chemical potential) z;, and
R, respectively. In other words, the new state |W(¢ + dt)) after detection therefore becomes
|11 (t+dt))|0p). This state then serves as the initial state for next evolution and measurement
interval. Then the whole sequence can be repeated to determine the random time evolution of
the CQD qubit system state.
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We can combine the evolution of the system state for the two possible outcomes of the
measurement as

[Ve(t + dt)) = [1 — dNe(dt)][thoc(t + dt)) + dNe(dt)[tne(t + di)). (19)

Here and from what follows we explicitly use the subscript ¢ to indicate that the quantity
to which it is attached is conditioned on previous measurement results, the occurrences
(detection records) of the electrons tunneling through the PC barrier in the past. We can think
of dN.(t) as the increment in the number of electrons N.(¢) = Y dN,(t) passing through
PC barrier in time dt. In the quantum-jump case, dN,(t) is equal to either zero or one, and
hence [dN,.(t)]*> = dN.(t). In addition, since the nature of electrons tunneling through the
PC is stochastic, dN.(t) thus represents a classical random process. Formally, the current
through the PC can be written as 1.(t) = e dN,.(t) /dt. Itis the variable N(¢), the accumulated
electron number transmitted through the PC, which is used in Refs. [5, 6, 7]. Intuitively, the
ensemble average E[dN,(t)] of the classical stochastic process dN.(t) equals |3.(t + dt)|?,
the probability (quantum average) of detecting electrons tunneling through the PC barrier in
time dt. Hence from Eq. (15), we have

E[dN.(t)] = Pre(t)dt = [D + (D' — D){ny).(t)]dt, (20)

where expectation value (n,).() is taken with respect to the normalized conditional state
|4.(t)) at time ¢. Equation (20) simply states that the average current is eD = ¢|7|? when
dot 1 is empty, and is eD’ = e|T + X|*> when dot 1 is occupied. Using Egs. (13) and (16)
[or Egs. (7), (17) and (18)], and expanding and keeping the terms of first order in dt¢, we
obtain from Eq. (19) the quantum-jump stochastic Schr'édinger equation, conditioned on the
observed event in time d¢:

dlipe(t)) = ldzvcu) (% - 1)

0 (%%CQD"’ (7-* —|—X*n12)(7-+ an) _ Pl;(t)>] |¢C(t)> (21)

Note that dN,.(¢) is of order dt. Hence terms proportional to d N..(¢)dt are ignored in Eq. (21).
To accommodate initial non-pure or mixed states, we express the stochastic Schr édinger

equations as stochastic master equations of the CQD qubit system density matrix. From Eq.

(19), the conditional, stochastic density matrix p. (¢ + dt) = |1.(t + dt)){1.(t + dt)| satisfies

pc(t + dt) = [1 - ch(dt)”?vZ}Oc(t + dt)><¢00(t + dt)|
+ ch(dt) W}lc(t + dt)><¢lc(t + dt)|’ (22)
where the relation [dN,()]?> = dN.(t) has been used. Using Egs. (13) and (16) [or Egs. (7),

(17) and (18)], and keeping terms up to order dt, we obtain the stochastic master equations,
conditioned on the observed event in time dt:

dp.(t) = dN.(1) [‘ﬂ%gn] _ 1] oult)

+ dt {—A[T + X11]pe(t) + Pre(t) pe(t) — %[HCQDapc(t)]}a (23)

where J[B]p = BpB', and A[B]p = (B'Bp + pB'B)/2. One can also derive, with the
help of Eqg. (21), the stochastic master equation (23) using the stochastic Itd calculus [3]
dpe(t) = d([e(t)){e(t)]) = (dte(t))) (We(D)] + [0c(D)) d{We(t)] + (d]ve(t))) (d(Pe(t)]).
Equations (21) and (23) are the same as Egs. (35) and (33) of Ref. [3]. But the derivation
presented here, starting from the Schr odinger equation for the combined whole system and
illustrating the essential physics of the quantum trajectories, is more transparent and heuristic.
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3. Connectionsto master equation approach

We show next that the master equation for the reduced or “partially” reduced density matrix
simply results when an average or “partial” average is taken on the conditional, stochastic
density matrix (constructed from the conditional, stochastic CQD qubit system state vector)
over the possible outcomes of the measurements on the PC bath. This result provides a unified
picture for these seemingly different approaches.

The traditional, unconditional master equation approach is to define a total density matrix
R(t+ dt) = |V (t + dt)){¥(t + dt)|, and then trace out the state of the bath. This leads to the
reduced density matrix

p(t+ dt) = Trp[R(t + dt)] = > |Balt + db)|*|thn(t + db)) (n(t + dt)| (24)

for the CQD qubit system alone. The effect of integrating or tracing out the environmental
(detector) degrees of the freedom to obtain the reduced density matrix is equivalent to that
of completely ignoring or averaging over the results of all measurement records dN.(t). This
can be seen by taking ensemble average on the conditional, stochastic density matrix Eq. (22),
identifying p(t+dt) = E[|1).(t+dt)){¢.(t+dt)|], and setting E[dN.(t)] equal to its expected
value Eq. (20). Then the resultant equation leads to Eq. (24) with |3, (¢ + dt)|? = P, (t)dt and
|Bo(t + dt)|? = 1 — P, (t)dt for the quantum-jump case. Furthermore, with the help of Egs.
(13) and (16) [or Egs. (7), (17) and (18)], we find the unconditional master equation:

(1) =~ Heap, p(0)] + TIT + Xnlplt) — AIT + Xnilp(t). (29

Note that the 7 term originating from the conditional state Eq. (16) or (18) represents the
effect, due to a detection of an electron tunneling through the PC, on the CQD density matrix.
This is why sometimes 7 is called a jump superoperator. Equation (25) can also be obtained
as in Ref. [3] by taking the ensemble average over the observed stochastic process on Eq.
(23) by setting E[dN.(t)] equal to its expected value Eg. (20). In this approach of master
equation of the reduced density matrix, the influence of the PC bath, decoherence effect for
example, on the CQD system can be analyzed [3]. But this approach or Eq. (25) does not tell
us anything about the experimental observed quantity, namely the electron counts or current
through PC. Hence, the PC detector in this approach is treated as a pure environment for the
system, rather than a measurement device, which can provide information about the change
of the state of the system.

An alternative approach recently developed in Refs. [5, 6, 7] is to take trace over
environmental (detector) microscopic degrees of the freedom but keep track of the number
of electrons, N, that have tunneled through the PC barrier during time ¢ in the “partially”
reduced density matrix. This allows one to extract information about the quantum state of
the qubit, by measuring the time average current (IN/¢) through the PC. The master (rate)
equation for this partially reduced density matrix for the CQD qubit system is derived in Ref.
[5] from the so-called many-body Schr-odinger equation. While it is derived in Refs. [6, 7], by
means of the diagrammatic technique in the Keldysh forward and backward in time contour,
for a Cooper-pair charge qubit coupled capacitively to a single-electron transistor. Here we
show that it can be obtained for the CQD/PC model by taking a “partial” average on the
conditional, stochastic CQD qubit system density matrix over the possible outcomes of the
measurement on the PC bath. The procedure to take the “partial” average can be described
as follows. First, taking the ensemble average on Eq. (23), we obtain Eq. (25). Then to keep
track of the number of electrons NV that have tunneled, we need to identify the effect of the
jump superoperator 7 term in Eq. (25). If IV electrons have tunneled through the PC at time
t + dt, then the accumulated number of electrons in the drain at the earlier time ¢, due to the
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contribution of the jump term, should be (N — 1). After writing out the number dependence
N or (N — 1) explicitly, we obtain the master equation for the “partially” reduced density
matrix as:

;
AN, 1) = ——
p(N,1) -

Evaluating Eq. (26) in the logical qubit charge state (i.e., perfect localization state of the
charge in dot 1 and dot 2, respectively), we obtain the rate equations, the same as Eqg. (3.3)
of Ref. [5]. If the sum over all possible values of V is taken [i.e. tracing out the detector
states completely, p(t) = > x p(N,t)], EQ. (26) then reduces to Eq. (25). This procedure
of reducing Eqg. (23) or (21) to Eq. (26) and then to Eq. (25) by averaging over (tracing out)
more and more available detector information provides a unified picture for these seemingly
different approaches reported in the literature. This procedure is particularly simple using
our formalism. That is if the (stochastic) master equation is expressed in a form in terms of
superoperators 7 and .4, and the effect of the jump superoperator 7 term is identified.

To summarize, we have presented a heuristic derivation of the quantum trajectory
(stochastic Schrodinger or master) equation starting from the full Schr’édinger equation of
the system and environment. We focus on the measurement interpretations to the quantum
trajectories. Then the concept of quantum trajectories arises quite naturally from an expansion
of the total state vector in eigen basis of the operator that represents the physical quantity or
observable of the environment that is measured. In the CQD/PC model, the observed quantity
of the PC environment is the number of electrons tunneling through the PC barrier. The
stochasticity in the quantum trajectory can be view as being due to the randomness in the
possible outcomes of the measurement record. We have shown that the quantum trajectory or
stochastic Schr odinger equation approach provides us with the most (all) information as far as
the system state evolution is concerned. In this approach, we are propagating in parallel the
information of a conditioned (stochastic) state evolution |1 (¢)) and a detection record dN.(t)
in a continuous measurement process. All the information carried away from the system to the
reservoirs is recovered and contained by the measurement records dN.(t) of perfect detection
or efficient measurement. This is why the system can be continuously described by a state
vector rather than a reduced or “partially” reduced density matrix. We have also shown that
the master equations of the reduced or “partially” reduced density matrix can be obtained as a
result of taking an ensemble average or partial average over the possible measurement records
in the quantum trajectory approach. This provides a unified picture for these seemingly
different approaches. The procedure to achieve this unified view is particularly easy to
understand using our formalism. Each quantum trajectory and corresponding detection record
mimics a possible single run of the continuous in time measurement experiment. We will
present elsewhere the simulation results for an initial qubit state readout experiment using
both of the quantum trajectory and “partially” reduced density matrix approaches.

[/HCQDa p(N, t)] +~7[T+ an]p(N - 17 t) - A[T_'—an]p(Nﬂ t)-(26)
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