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Electron exchange coupling for single-donor solid-state spin qubits
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Intervalley interference between degenerate conduction band minima has been shown to lead to oscillations
in the exchange energy between neighboring phosphorus donor electron states in silicon@B. Koiller, X. Hu, and
S. Das Sarma, Phys. Rev. Lett.88, 027903~2002!; Phys. Rev. B66, 115201~2002!#. These same effects lead
to an extreme sensitivity of the exchange energy on the relative orientation of the donor atoms, an issue of
crucial importance in the construction of silicon-based spin quantum computers. In this article we calculate the
donor electron exchange coupling as a function of donor position incorporating the full Bloch structure of the
Kohn-Luttinger electron wave functions. It is found that due to the rapidly oscillating nature of the terms they
produce, the periodic part of the Bloch functions can be safely ignored in the Heitler-London integrals as was
done by Koiller, Hu, and Das Sarma, significantly reducing the complexity of calculations. We address issues
of fabrication and calculate the expected exchange coupling between neighboring donors that have been
implanted into the silicon substrate using an 15 keV ion beam in the so-called ‘‘top down’’ fabrication scheme
for a Kane solid-state quantum computer. In addition, we calculate the exchange coupling as a function of the
voltage bias on control gates used to manipulate the electron wave functions and implement quantum logic
operations in the Kane proposal, and find that these gate biases can be used to both increase and decrease the
magnitude of the exchange coupling between neighboring donor electrons. The zero-bias results reconfirm
those previously obtained by Koiller, Hu, and Das Sarma.

DOI: 10.1103/PhysRevB.68.195209 PACS number~s!: 71.55.Cn, 03.67.Lx, 85.30.De
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I. INTRODUCTION

Solid state systems have emerged as a promising ca
date for the construction of a large scale quantum comp
~QC!. In particular, spin based architectures take advant
of the relatively long spin dephasing times of donor electro
or nuclei in silicon. Single qubit operations are performed
tuning the spin Zeeman energy to be resonant with an o
lating field which drives the transition while neighboring q
bits are coupled via the electron exchange interact
whether it be directly in the case of electron-spin proposa1

or indirectly in the case of nuclear spin quantum compute
In this work we concentrate on the Kane2 concept of

single phosphorus donor nuclear spin qubits embedded
silicon substrate, which is a leading candidate in the sea
for a scalable QC architecture. The Kane architecture~shown
in Fig. 1! calls for the placement of phosphorus donors
substitutional@face-centered cubic~fcc!# sites in the host sili-
con matrix, with interdonor spacings of order 200 Å. Qua
tum logic operations on the nuclear-spin qubits are imp
mented through coherent control of the donor electron w
functions which are coupled to the donor nuclei through
contact hyperfine interaction. This control of the electr
wave functions is achieved through application of volta
biases to control gates placed on the substrate surface a
(A gate!, and between (J gate! the phosphorus donors, whic
create electrostatic potentials within the device thus alte
the form of the electron wave functions.

In a recent paper, Koiller, Hu, and Das Sarma~KHD!3

presented theoretical evidence for oscillations in
electron-mediated exchange coupling as a function of in
0163-1829/2003/68~19!/195209~9!/$20.00 68 1952
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donor separation, and a strong dependence of this coup
on the relative orientation of the two donors with respect
structure of the silicon substrate. They calculate the
change coupling using an approximate version of the Heit
London formalism and by essentially ignoring the period
part of the Bloch wave functions in the expression for t
donor electron wave functions. In this article we elimina
both these approximations, by calculating the exchange c
pling in the full Heitler-London formalism and by includin
the full Bloch structure of the donor electron wave functio
We show that while the first approximation breaks down
small donor separations, as discussed by KHD themselv4

the second approximation, that of ignoring the periodic p
of the Bloch functions, is in excellent agreement with the f
calculations regardless of the donor orientation.

FIG. 1. The Kane architecture based on buried phosphorus
ants in a silicon substrate.
©2003 The American Physical Society09-1
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This paper is organized as follows. In Sec. II we revie
the calculation of the valence electron wave functions
phosphorus donors in silicon, in the Kohn-Luttinger effecti
mass formalism. In Sec. III we discuss the Heitler-Lond
formalism used to calculate the exchange coupling betw
neighboring donor electrons, and we show that the terms
arise due to the periodic part of the Bloch functions oscill
sufficiently rapidly so as to average to zero over the rang
the integrals. Section IV contains a discussion of some of
fabricational issues that arise from the strong position dep
dence of the exchange energy on the production of a p
phorus donor based solid state quantum computer.

Section V is devoted to a calculation of the dependenc
the exchange coupling between neighboring donor elect
on voltage biases applied to the controlJ gate, used to tune
the interqubit coupling. By extending the conventional effe
tive mass formalism we construct a basis of nonisotro
hydrogenlike envelope functions in which we expand
donor-electron wave function in the presence of the elec
potentials. The potential created inside the device due to
J-gate bias is calculated using a commercial software pa
age specifically designed for the modeling of semiconduc
devices. Donor wave functions are obtained by direct dia
nalization, and the Heitler-London formalism is used to d
termine the exchange coupling for various gate biases
donor separations oriented in the silicon@100# direction.

II. THE DONOR ELECTRON WAVE FUNCTION

Although the qubits of the Kane quantum computer
encoded by the nuclear spins, it is the donor electron wh
h
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mediates both single and coupled gate operations. There
the crucial element in the quantum description of the dev
is the donor electron wave function. Initial attempts to d
scribe the operation of the device, particularly in response
external time dependent gate potentials which complicate
situation considerably, have focused on effective hydroge
type approximations for the donor electron wave function5,6

or the use of simplified potentials.7 These calculations pro
vide some useful estimates, however, more detailed calc
tions are required, using realistic models of both the do
electron wave function and the potentials induced inside
device by the application of control gate biases.

In going beyond the effective hydrogenic treatment of t
ground-state electron wave function for phosphorus don
in silicon it is recognized that the underlying crystal structu
of the silicon must have an effect. The wave function is th
expanded in the basis of the Bloch functions for silicon,8,9

C~r !5E F~k!fk~r !dk. ~1!

The coefficientsF(k) are obtained by substituting the abov
form into the Schro¨dinger equation, with the Hamiltonian
H5H02U(r ), where H0 is the Hamiltonian for the pure
silicon crystal andU(r ) is the donor-potential for phos
phorus. The Bloch functions can be written in the for
fk(r )5eik•ruk(r ), whereuk(r ) is a function that shares th
periodicity of the lattice, and can be expanded in a basis
plane waves with wave vectors equal to the reciprocal lat
vectors for siliconG, uk(r )5(GAk(G)eiG•r. The result is
that the Schro¨dinger equation can be written as
EF~k!5Ek
0F~k!1 (

G,G8
E Ak8,G8

* Ak,GU~r !ei (k2k8)•rei (G2G8)•rF~k8!drdk8

5Ek
0F~k!1 (

G,G8
E Ak8,G8

* Ak,GŨ~k1G2k82G8!F~k8!dk8, ~2!
n-
the
is

p-

ial
r
de

p-

ia-
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in
whereŨ(k)5*U(r )e2 i r•kdr is the Fourier transform of the
impurity potential. TheEk

0 are the eigenenergies of the Bloc
functions fk(r ), for the pure silicon lattice. We make th
approximation that due to the increased energies of
higher bands, only conduction band states contribute to
impurity wave function. Further, in silicon there are six d
generate conduction band minima, located along the^100&
directions ink space, 85% of the way between the centerG
point! and the zone boundary (X point!. Because of the re
duced energies in these regions the envelope functions
be expressed as a sum of functions localized around eac
the conduction band minimaF(k)5(mFm(k).

In the effective-mass treatment8–10 the Bloch energies are
expanded to second order around the conduction b
minima Ek

0'(\2/2)(k'
2 /m'1ki

2/mi), wherek� is the com-
ponent ofk2km perpendicular tokm and ki is the parallel
e
e

an
of

nd

component. Them' ,mi are effective masses and the i
equality of these two values reflects the anisotropy of
conduction band minima. An additional approximation
made whereby only the terms withG5G8 in the potential
term of the Schro¨dinger equation are included. The assum
tion is thatU(k2k81G2G8)!U(k2k8) for GÞG8. This
approximation is well satisfied for a Coulombic potent
U(k)51/(kp2uku2), with k511.9 the dielectric constant fo
silicon, and with the reciprocal lattice vectors of magnitu
uGu5n2p/d, where n is an integer andd55.43 Å is the
lattice spacing for silicon. Another way of viewing the a

proximation is that the termsei (G2G8)•r in the first line of Eq.
~2! oscillate on a scale sufficiently short compared to var
tions in U(r ), that they average the integrand to zero. W
will show in the next section that the same approximat
allows us to ignore the periodic part of the Bloch functions
9-2
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FIG. 2. The solid line shows Kohn-Luttinger wave function for a phosphorus donor electron in silicon, plotted along directions
symmetry within the crystal. The dotted line shows an isotropic 1s hydrogenic wave function, with an Bohr radius of 20.13 Å.
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the donor electron wave functions when performing Heitl
London integrations.

One further approximation is necessary,Ak8,G'Ak,G ,
which coupled with the relation(GuAk,Gu251 gives the ef-
fective mass Schro¨dinger equation

\2

2 S k'
2

m'

1
ki

2

mi
D(

m
Fm~k!1E Ũ~k2k8!(

m
Fm~k8!dk8

5E(
m

Fm~k!. ~3!

In the standard effective mass treatment the so-called va
orbit terms, which couple the envelope functions at differ
conduction band minima are ignored, and we are left with
independent equations, one for each minimum. With a C
lombic impurity potential the solutions are nonisotropic h
drogenic wave functions of the form

F6z~r !5
exp@2A~x21y2!/a'1z2/ai#

A6pa'
2 ai

, ~4!

where Fm(r )5*Fm(k2km)eik•rdk, and we have used th
example of the envelope function localized around thez
minima of the conduction band. The Kohn-Luttinger8,9 form
for the electron wave function of a donor situated at a
positionR is then given by

C~rÀR!5(
m

Fm~rÀR!ekm"„rÀR…um~r !, ~5!
19520
-

y-
t
x
-

y

where the periodic part of the Bloch function is independ
of the position of the substitutional impurity. The valuesa'

525.09 Å, ai514.43 Å are the effective Bohr radii, and a
determined variationally.3,8

It is well known that the valley orbit coupling does con
tribute to the energy of the state,11 particularly if the donor
potential is not Coulombic as is the case in the immedi
vicinity of the donor nucleus. The consequence of this is t
the donor electron binding energy given by this wave fun
tion is E528.95 meV, significantly lower than the exper
mental value of E545.5 meV.12,13 This discrepancy is
thought to arise from the deviation of the donor potent
from a purely Coulombic potential as well as the effect o
nonstatic dielectric constant in silicon.14 It is expected, how-
ever, that at distances of more than approximately an ef
tive Bohr radius from the donor nucleus, the donor poten
should be approximately Coulombic and so Eq.~5! will pro-
vide a good description of the true donor electron in t
region.8 Thus the Kohn-Luttinger form of the donor-electro
wave function should be adequate for the purposes of ca
lating exchange energies for donor separations in the ra
considered in this article.

A plot of the donor electron wave function along thre
directions of high symmetry, calculated using effective Bo
radii as determined by Koilleret al.,3 is shown in Fig. 2 for
a donor placed at a substitutional lattice site. The coefficie
Akm ,G , were calculated using the simple local empiric
pseudopotential method as outlined in Ref. 15, and a bas
125 states. This method accurately reproduces the electr
9-3



r-
o
ti

in
fe
ea
-
s
t

on
t
a

of
he

rs

he
e
n

fo

n
i

s,
te

x
e

ob
er
o
iti

ng
m

ger
en
y to
ns
ve

ture
to

of
For
ve
se
r,
the

in
n
mb
toti-
is

that
ed
nd

he
s
en

n-
and
ed.
re
fi-
at-
x-
is
ive
e

C. J. WELLARD et al. PHYSICAL REVIEW B 68, 195209 ~2003!
band structure for silicon, particularly in the region of inte
est for this calculation, the lowest conduction bands, as
tained using more complicated nonlocal pseudopoten
techniques. The donor electron wave functions obtained
this manner clearly display oscillations produced by the
terference between the Bloch functions located at the dif
ent conduction band minima. The wave functions are r
and in the@111# direction slightly asymmetric, the asymme
try being a consequence of the presence of the second
lattice. In the @111# orientation the silicon atoms are no
evenly spaced, and so the neighboring silicon atom on
side of the phosphorus donor is much closer than that on
other side. Superimposed over the donor wave function is
isotropic 1s hydrogenic envelope with a Bohr radius
20.13 Å, reflecting the effect of the superposition of t
nonisotropic envelope functionsFm .

III. THE HEITLER LONDON FORMALISM

The two electron Hamiltonian for a system of two dono
separated by a vectorR, in effective Rydberg units, is

H52
\

2m2“1
22

\

2m2“2
22

e2

4per1
2

e2

4peuR2r1u
2

e2

4per2

2
e2

4peuR2r2u
1

e2

4peur12r2u
1

e2

4peR
1VSi~r1 ,r2!.

~6!

In the standard Heitler-London approximation16 one assumes
that the lowest energy two electron wave function of t
two-donor system is simply a correctly symmetrized sup
position of single electron wave functions centered arou
each of the two donors

C6~r1 ,r2!5
1

A2~16S2!
@C~r12R/2!C~r21R/2!

6C~r11R/2!C~r22R/2!#, ~7!

where the two donors are located at positions6R/2. This
approximation is asymptotically exact and should hold
separations greater than the effective Bohr radiiuRu
@a' ,ai . The antisymmetry of the fermion wave functio
then tells us that the exchange splitting, the difference
energies between the spin singlet and triplet spin state
simply equal to the difference in energy between the sta
C6 , that isEtriplet2Esinglet5E22E1 .

In this article we present our results in terms of the e
change, orJ coupling, in the exchange term of the effectiv
spin HamiltonianJsW 1

e
•sW 2

e , which is common to the quantum
computing literature. We make this decision despite the
servation that it is the exchange splitting, the energy diff
ence between the single and triplet states, that is most c
monly presented in the solid-state literature. These quant
are related by the expressionJ5(Etriplet2Esinglet)/4.

In the Heitler-London formalism the exchange coupli
can be expressed in terms of matrix elements of the Ha
tonian one can rewrite this as
19520
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J~R!5
1

2
@S~R!2I 1~R!2I 2~R!#/@12S~R!4#, ~8!

where the overlap integrals are given explicitly by

I 1~R!5E d3r1d3r2C* ~r11R/2!C* ~r22R/2!

3HC~r11R/2!C~r22R/2!,

I 2~R!5E d3r1d3r2C* ~r11R/2!C* ~r22R/2!

3HC~r21R/2!C~r12R/2!,

S~R!5E d3rC~r1R/2!* C~r2R/2!. ~9!

Computation of these expressions using the Kohn-Luttin
wave function without approximation is rather tedious, giv
the large number reciprocal lattice vectors it is necessar
sum over to evaluate the periodic part of the Bloch functio
for each of the six Bloch states in the donor electron wa
function. We have used an adaptive Monte Carlo quadra
program to evaluate all overlap integrals, taking due care
obtain reasonable precision.

In Fig. 3 we plot the exchange energy as a function
donor separation in each of the major lattice directions.
comparison the result using an isotropic hydrogenic wa
function is also given. We compare our results with tho
obtained using the method of KHD in their original pape3

who used two major approximations in order to make
calculation more tractable, some of which are discussed
detail in references.4,17 First, the Heitler-London expressio
for the exchange energy is approximated by the Coulo
exchange integral alone, an approximation that is asymp
cally quite good, however it is this approximation that
responsible for the difference between our result and
obtained by KHD in Ref. 3. In Ref. 4, the authors have us
the complete form for the Heitler-London expression, a
obtained results that match those presented here.

The other approximation made is to effectively ignore t
contribution of the periodic part of the Bloch function
um(r )51; this is an excellent approximation as can be se
from the figures in which it is almost impossible to disti
guish between the results obtained in this approximation
those for which the detailed Bloch structure was includ
The ability to ignore the periodic part of the Bloch structu
in the computation of the Heitler-London integrals signi
cantly reduces the complexity of the calculation by elimin
ing the sums over reciprocal lattice vectors. It is worth e
amining this approximation in more detail as we find it
effectively the same approximation as is made in effect
mass formalism to obtain the Kohn-Luttinger form for th
donor electron wave function.

The Heitler-London integrals are all of the form
9-4
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ELECTRON EXCHANGE COUPLING FOR SINGLE-DONOR . . . PHYSICAL REVIEW B 68, 195209 ~2003!
FIG. 3. Calculated exchange couplings as a function of donor separations along three high symmetry directions. In each case w
a solid line the results obtained when the periodic part of the Bloch functionu(r ) is included, a dashed line indicates the results obtai
with u(r )51. In each plot these lines cannot be separately resolved. The dotted line gives the results obtained when using the a
tions of KHD and the dotted-dashed line gives the exchange coupling calculated using a 1s hydrogenic orbital with an effective Bo
of 20.13 Å. The asterisks denote the positions of lattice sites.
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I 5E C* ~r12R/2!C* ~r21R/2!V~r1 ,r2!C~r22R/2!

3C~r11R/2!dr1dr2

5E (
a,b,g,d

(
i , j ,l ,m

Fi~r12R/2!F j~r21R/2!

3Fl~r22R/2!Fm~r11R/2!V~r1 ,r2!

3ei (ki1km2k j 2kl )•R/2ei (km2ki )•r1ei (kl2k j )•r2

3Aki ,Ga
* Ak j ,Gb

* Akl ,Gg
Akm ,Gd

ei (Ga2Gd)•r1

3ei (Gb2Gg)•r2dr1dr2 . ~10!

The various potentials represented in the above expressio
V(r1 ,r2) are all impurity potentials of a similar nature t
those encountered in the effective mass formalism, and so
expect that they are sufficiently slowly varying that we c
safely ignore the rapidly oscillating terms in the above in
grand, in exactly the same manner. This immediately giv

I 5E (
i , j

Fi~r12R/2!F j~r21R/2!Fi~r22R/2!

3F j~r11R/2!V~r1 ,r2!ei (ki1km2k j 2kl )•R/2dr1dr2 ,

~11!
19520
as

e

-

which is equivalent to settingum(r )51 in Eq. ~10!. The
‘‘rapidly oscillating’’ terms include the exponentials contain
ing the values ofk at the conduction band minima, which a
separated by a minimum magnitude ofdk52A2
30.85p/d. This separation is sufficiently large to allow u
to ignore terms except those for whichi 5m,l 5 j . Since
(GAk,G* Ak,G51, this allows us to ignore the periodic part o
the Bloch functions in the Heitler-London integrals.

IV. FABRICATION

The observed extreme sensitivity of the exchange c
pling on the relative orientation of the two phosphorus d
nors sets stringent requirements on the placement of do
for any quantum computer architecture that is reliant on
exchange interaction to couple qubits. In this section we d
cuss these implications for the construction of a Ka
nuclear spin quantum computer.

Fabrication of the Kane solid-state quantum compute
being pursued along two parallel paths.18 In the so-called
‘‘bottom up’’ approach, individual phosphorus donors are
fectively placed with atomic precision on a phosphorus s
face by application of phosphine gas to a hydrogen ter
nated silicon surface in which individual hydrogen atom
have been removed at the proposed donor site usin
scanning-tunneling microscope tip. The hydrogen monola
9-5
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C. J. WELLARD et al. PHYSICAL REVIEW B 68, 195209 ~2003!
is then removed and the surface overgrown w
phosphorus.19 Although this approach has not been fully d
veloped, it is likely that it will be able to produce an array
donors located at precise fcc substitutional sites, to withi
few lattice spaces. Small displacements are inevitable, h
ever, and can have dramatic effects on the exchange cou
between the donors. This is illustrated in Fig. 4 where
show a plot of the exchange coupling as a function of
magnitude of the displacementudu of the second phosphoru
dopant from its desired position at a fcc substitutional sit
distance of 200.91 Å, in the@100# direction, from the first
dopant. These dopants have been displaced by no more
four fundamental lattice spacings on either of the two
lattices that make up the silicon matrix, however, the
change coupling varies by more than an order of magnit
emphasizing the need for precise placement.

The second approach, known as the top down appro
calls for the implantation if the phosphorus donors into
silicon using an ion beam of phosphorus ions incident on
substrate.20 The precision of such a technique in the plac
ment of dopants is fundamentally limited by the pheno
enon known as ‘‘straggling,’’ whereby the implanted io
scatter from the nuclei of the host silicon atoms. Simulatio
of this process for a beam of 15 keV phosphorus ions
planted into silicon, an energy appropriate for an implan
tion depth of approximately 200 Å into the silicon substra
give a roughly Gaussian distribution for the final position
the dopant with a variance of about 90 Å in the transve
direction, and 100 Å in the longitudinal direction. Usin
these data, for two dopants implanted 200 Å apart in
@100# direction, we have calculated the distribution of e
change couplings between the donor electrons, assuming
after thermal annealing the phosphorus donors take up a
sition on a fcc substitutional site. Figure 5 shows a plot
integrated probability,*J

`P(J8)dJ8, that is the probability
that the exchange coupling is greater than a valueJ, for two
dopants implanted in the manner just described.

In the case of electron spin quantum computers where
the exchange energy that directly couples neighboring qu

FIG. 4. Calculated exchange couplings for donors at fcc lat
sites that are displaced by a vectord from their ideal separation o
200.91 Å in the@100# direction. The couplings are plotted as
fraction of the expected exchange couplingJ(200.91 Å)
50.18meV.
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a coupling of 50meV corresponds to a gate time of the ord
of 10 GHz. The top down approach can in this case prod
qubits coupled by extremely fast gates with a very high pr
ability. In nuclear spin quantum computers however, the
change interaction only mediates the interqubit coupling a
the resulting gates are slower. The original Kane propo
calls for an adiabatic implementation of a controlled-NO
gate that requires a exchange coupling of approxima
50 meV.2,21 Additional proposals exist for nonadiabat
implementations22,23 for which controlled-NOT gates can b
accurately implemented with a lower exchange coupli
Figure 5 shows the probability that the bare exchange c
pling for implanted donors being greater than 50meV, is
about 6%. What is more important than the bare coupl
however is the values of the exchange coupling that can
achieved with the application ofJ-gate biases.

We note that KHD have performed calculations that su
gest a method for overcoming the strong dependence of
exchange coupling on the donor orientation.4 They calculate
the exchange coupling, in the same approximations as
cussed earlier, for phosphorus donor electrons in uniaxi
strained silicon. The strain is a product of the silicon ho
being fabricated on a layer of Si12dGed , and is found to
suppress the oscillations in the coupling for donors that
within a plane perpendicular to the direction of the uniax
strain. The coupling remains highly sensitive to displac
ments away from this plane.

V. EXTERNAL CONTROL OF THE EXCHANGE
COUPLING

Inherent in the Kane proposal for a solid state quant
computer is the ability to control the exchange coupling
neighboring donor electrons through the application of vo
age biases to a controlJ-gate placed on the substrate surfa
between the position of the phosphorus donors, as illustra
in Fig. 1. In this section we calculate the effect on the e
change coupling on theJ-gate bias. Some results have be
reported on similar calculations. Fanget al.7 used an unre-
stricted Hartree-Fock method, which avoids some of the

e

FIG. 5. A plot of the logarithm of the integrated probability fo
the exchange coupling between donor electrons for donors
planted 200 Å apart in the@100# direction, using a 15 keV phos
phorus ion beam. The donors are assumed to take a substitut
fcc lattice site.
9-6
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ELECTRON EXCHANGE COUPLING FOR SINGLE-DONOR . . . PHYSICAL REVIEW B 68, 195209 ~2003!
proximations inherent in the Heitler-London approach,
calculate the exchange coupling between phosphorus d
electrons as a function of a simplified electric potential. Th
use a trial wave function of the formC(r )5F(r )fkm

(r ),
including only one of the six degenerate conduction ba
minima, with a spherical envelope function, that is one of
same form as Eq.~4!, but with a'5ai520 Å. As a result of
their single minimum approximation they cannot possib
reproduce the oscillatory nature of the coupling which res
from interference between the terms localized at the
minima. They model the potential produced inside the dev
by the control gate as one-dimensional potential of the fo
VJ(x)5m@(x2R/2)(x1R/2)/(R/2)2#330 meV, wherex is
the distance is along the direction between the two don
which are situated atx56R/2, as defined in Fig. 1.

In our calculation we compute the potential produced
side the device due to the application of a voltage bias
metallicJ gate by numerical solution of the Poisson equat
using a commercial packageTCAD,24 designed for the semi
conductor industry. In Fig. 6 we plot the potential parallel
the interdonor axis, for several values of thez coordinate,
which denotes the distance below the oxide barrier, loca
at z52200 Å. For more information on the details of th
potential calculation see Ref. 25. We compare the poten
obtained for a J-gate voltage of 1 V, with the one
dimensional potential of Fanget al. and see that the two
potentials agree well forz50, the plane of the donors, pro
vided we setm50.15. However, we see that for this value
m the two potentials are quite different in the planes 50
above and below the donors. We must therefore concl
that the one-dimensional approximation is not a good on

To calculate the effect of the applied potential on the el
tron we expand the wave function as follows:

C~r2R/2,VJ!

5 (
n,l ,m

cn,l ,m~VJ!(
m

Fm
n,l ,m~r2R/2!eikm•(r2R/2), ~12!

FIG. 6. Potential produced inside the device by a voltage bia
1 V applied to a metallicJ gate. Herex is the interdonor axis, the
donors are located atx56100 Å and atz50. The potential is
independent of they coordinate, mimicking a very long electrod
The dashed line is the one-dimensional potential used by Fanget al.
with m50.15 and shifted to match our potential atx,z50.
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where theFm
n,l ,m(r2R/2) are nonisotropic hydrogenic enve

lope functions defined by Faulkner.12 Them is a label for the
six degenerate conduction band minima and determines
direction of the anisotropy of the envelope function, for e
ample,F6z

n,l ,m(r )5Fn,l ,m(x,y,gz), is the hydrogenic function
with a Bohr radiusa5a' andg5ai /a' . The orthonormal-
ity of this basis is enforced by theei (km2kn)•(r2R/2) terms
which appear in the matrix elements and due to their rap
oscillating nature average to zero unlesskm5kn . The coef-
ficientscn,l ,m are determined by direct numerical diagona
sation of the Hamiltonian in the presence of the electrost
potential. We use a basis of 140 states, which includes
states with principle quantum number up to and includ
n57, and we rescale the energies such that the unpertu
ground-state energy gives the experimentally observed v
of 45.5 meV for phosphorus donors in silicon.

The donor electron wave functions obtained in this w
are then used in the Heitler-London formalism to calcul
the electron exchange energy, as a function of both the do
separation, and appliedJ-gate bias. The results are plotted
Fig. 7, for donor separations from 80–120 Å in the@100#
direction. We see that application of a positive bias will te
to increase the exchange coupling, while a negative bias
creases the strength of the coupling. It is also worth not
that the relative increase in the exchange coupling produ
by a given bias increases with the donor separation. Also
change in coupling is strongest at the peaks, the applica
of a positive bias enhances the oscillations in the excha
coupling whereas a negative bias of magnitude 1 V inve
the oscillations such that points that were originally at pe
become troughs.

The range of separations shown in these plots is far
than the approximately 200 Å donor separation called for
the original Kane proposal—we have plotted values o
range for ease of comparison with our previous results,
more particularly those of KHD. In Fig. 8 we plot the ex
change coupling as a function of theJ-gate bias for donors
separated by 200.91 Å in the@100# direction. At this separa-
tion a 1 VJ-gate bias can increase the exchange coupling
over two orders of magnitude up to a value of approximat

of

FIG. 7. Exchange coupling as a function of donor separation
donors oriented along the@100# direction and variousJ-gate biases.
9-7
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30 meV. The exchange coupling can also be reduced
application of a negative bias.

Although it is difficult to compare our results with thos
of Fanget al. due to the different potentials, the shift of a
order of magnitude obtained for separation of 200 Å an
bias of 1 V is greater than the shift they predict. For a va
of m50.15, Fanget al.predict a shift of less than an order o
magnitude. This discrepancy can in part be attributed to
1D approximation for the gate potential which does not
count for the fact that the magnitude of the potential
creases as theJ gate is approached from below~in the z
direction!. We note that it may not be possible to apply vo
ages much greater than one volt to these nanoscale de
without exceeding the breakdown fields of the various ma
rials involved.25

FIG. 8. Exchange coupling as a function ofJ-gate bias for do-
nors at fcc lattice sites separated by 200.91 Å in the@100# direction.
.
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VI. DISCUSSION AND CONCLUSIONS

In agreement with the approximations implicit in the ca
culations of donor electron exchange energy of Koiller, H
and Das Sarma,3 we show explicitly that the periodic part o
the Bloch functions in the donor electron wave functions c
be ignored in the Heitler-London integrals, greatly reduci
the complexity of the calculation. This has allowed the c
culation of the intrinsic exchange coupling for a large nu
ber of donor pairs distributed according to the probabil
distribution for donors implanted 200 Å apart by 15 keV io
beams. In this manner we have determined the probab
distribution of the exchange coupling for the top-down a
proach for the fabrication of a Kane solid-state quant
computer.

In addition we have investigated the application of cont
gate biases to increase the exchange coupling between d
pairs using both realistic potentials and realistic donor el
tron wave functions. We find that as expected the excha
coupling can be increased by the application of a posit
bias, and decreased with a negative bias. Over the rang
donor separations investigated it was found that the rela
increase of the exchange coupling produced by a given
increases with the separation, and for donors separate
200 Å in the @100# direction a 1 V bias can increase th
coupling by over two orders of magnitude.
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