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Edge and bulk electron states in a quasi-one-dimensional metal in a magnetic field:
The semi-infinite Wannier-Stark ladder

Victor M. Yakovenko* and Hsi-Sheng Goan
Department of Physics and Center for Superconductivity, University of Maryland, College Park, Maryland 20742-4111

~Received 10 March 1998; revised manuscript received 15 June 1998!

We study edge and bulk open-orbit electron states in a quasi-one-dimensional~Q1D! metal subject to a
magnetic field. For both types of states, the energy spectrum near the Fermi energy consists of two terms. One
term has a continuous dependence on the momentum along the chains, whereas the other term is quantized
discretely. The discrete energy spectrum is mathematically equivalent to the Wannier-Stark energy ladder of a
semi-infinite 1D lattice in an effective electric field. We solve the latter problem analytically in the semiclas-
sical approximation and by numerical diagonalization. We show explicitly that equilibrium electric currents
vanish both at the edges and in the bulk, so no orbital magnetization is expected in a Q1D metal in a magnetic
field. @S0163-1829~98!10435-6#
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I. INTRODUCTION

In a strong magnetic field, the quasi-one-dimensio
~Q1D! organic conductors of the (TMTSF)2X family1 ~also
known as the Bechgaard salts! exhibit very interesting phe
nomena, such as magnetic oscillations, magnetic-fi
induced spin-density wave~FISDW!, and the quantum Hal
effect ~QHE! ~see, for example, Ref. 2!. Because the Ferm
surfaces of Q1D metals are open, these phenomena
different mechanisms in Q1D conductors compared to m
conventional materials with closed Fermi surfaces. For
ample, the QHE exists only in the FISDW state, but not
the metallic state of Q1D conductors.3,4 Thus far, the theory
of the Bechgaard salts focused mostly on the bulk elec
properties~see, for example, Ref. 3!. Only recently the edge
aspects of the QHE in the Bechgaard salts attrac
attention.5,6 An explicit picture of the QHE in the FISDW
state in terms of the edge states was developed in Re
However, that work did not take into account possible def
mations of the electron wave functions near the edges. In
current paper, we present a detailed study of the elec
wave functions and energies near the edge of a Q1D con
tor in the metallic~not FISDW! state. This work may serve
as a starting point for a more accurate theory of the e
states in the FISDW state and their role in the QHE.
proper description of the edge states is also important for
theory of the cyclotron resonance in Q1D metals.7

The edge states of electrons in a Q1D metal in a magn
field were studied semiclassically by Azbel and Chaikin8,9

and numerically by Osada and Miura.10 In Ref. 8 the WKB
quantization condition was applied to the problem incons
tently, which resulted in a wrong conclusion that the ed
states have a discrete energy spectrum, whereas the
states have a continuous one. This statement was als
peated in Ref. 11. It was claimed in Refs. 8 and 9 that
electron edge states produce thermodynamic oscillation
magnetization in a Q1D metal with an open Fermi surface
the present paper, we clear up the confusion, and show
the energy of either a bulk or an edge state is a sum of
terms, one of which has a continuous spectrum and the o
PRB 580163-1829/98/58~12!/8002~7!/$15.00
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discrete~in the approximation where the longitudinal ele
tron dispersion law is linearized near the Fermi energy!. The
WKB quantization condition determines the discrete ene
terms of both the edge and bulk states. In the Appendix,
explicitly point out a mathematical error in Ref. 9 that led
the wrong conclusions. In Sec. IV, we show explicitly th
the equilibrium electric currents vanish both at the edges
in the bulk, so no orbital magnetization is expected in
magnetic field. This result is in agreement with independe
of the bulk internal energy of a Q1D metal with an op
Fermi surface on a magnetic field.12

The Schro¨dinger equation that we solve analytically~Sec.
II ! and numerically~Sec. III! in order to find the discrete par
of the electron energy is mathematically equivalent to
equations that describe the Wannier-Stark ladder13 of a semi-
infinite 1D lattice in a uniform electric field. An analytica
solution of this problem in terms of special functions w
obtained in Refs. 14 and 15, but our WKB solution is mo
general. Our results might be useful for interpreting expe
ments on finite-size GaAs-Ga12xAl xAs superlattices in an
electric field.16

II. ANALYTICAL SOLUTION

We model the Bechgaard salts by a 2D system that c
sists of 1D chains parallel to thex axis and spaced at
distanceb, their coordinates beingy5nb, where n is an
integer number. The Fermi surface of 1D electron mot
along the chains consists of the two Fermi points charac
ized by the Fermi momenta6PF . The energy dispersion
law of the longitudinal electron motion can be linearized
the vicinity of the Fermi energy« i56vFpx , wherevF is the
Fermi velocity, the energy« i is counted from the Fermi en
ergy, and the longitudinal momentapx are counted from
6PF for the two Fermi pointspx5Px7PF . In this paper,
we consider only the electron states in the vicinity of t
1PF Fermi point. The formulas for the2PF electrons can
be obtained by changing the sign ofvF . The chains are
coupled in they direction by the electron tunneling ampl
tude t. The magnetic fieldH is applied in thez direction.
Choosing the Landau gaugesAx52Hy andAy5Az50, we
8002 © 1998 The American Physical Society
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PRB 58 8003EDGE AND BULK ELECTRON STATES IN A QUASI- . . .
introduce the magnetic field into the Hamiltonian via t
substitutionpx→px2eAx /c, wheree is the electron charge
andc is the speed of light. An energy eigenfunction of ele
tron has the factorized form

cpx ,M~x,n!5eipxx/\fM~n!. ~1!

The eigenfunctions of transverse motion,fM(n), are labeled
by the discrete quantum numberM and obey the following
1D discrete Schro¨dinger equation:

nVfM~n!2t@fM~n11!1fM~n21!#5EMfM~n!,
~2!

whereV is the characteristic energy of the magnetic field

V5ebHvF /c. ~3!

Equation~2! also describes a 1D lattice in the uniform ele
tric field 2HvF /c in the y direction. This electric field
would appear in the reference frame moving with the Fe
velocity vF due to the Lorentz transformation of the ma
netic field H. The energy«(px ,M ) of eigenfunction~1! is
the sum of the longitudinal and transverse terms:

«~px ,M !5vFpx1EM . ~4!

We assume thatH is not too strong:V<2t. The opposite
case V>2t, easily treated by perturbation theory in th
small parameter 2t/V, requires unrealistically high magnet
fields in the Bechgaard salts.

We consider a crystal that is infinite in thex direction and
semi-infinite in the positivey direction. The wave functions
fM(n) are defined atn>1 with the free boundary condition
at n51. As one can see from Eq.~2!, this formulation is
equivalent to consideringfM(n) at both positive and nega
tive n with the zero boundary condition atn50:

fM~0!50. ~5!

We closely follow Ref. 17 in our treatment of the pro
lem. To solve Eq.~2!, we expressfM(n) in terms of its
Fourier transformwM(k):

fM~n!5E einkwM~k!
dk

2p
. ~6!

Equation~6! defines the functionfM(n) of the continuous
variablen, which has a physical meaning only at the integ
positive points. The integration in Eq.~6! proceeds along a
certain contour in the complex plane ofk. Equation~6! sat-
isfies Eq.~2! provided wM(k) vanishes at the ends of th
contour, and obeys the equation

iV]wM~k!/]k5~EM12t cosk!wM~k!. ~7!

Solution of Eq.~7! is

wM~k!5expF2 i E
0

k

j~k8,EM !dk8G ~8!

5exp@2 i ~EMk12t sink!/V#, ~9!

where the function

j~k,EM !5@EM2«'~k!#/V ~10!
-

i

r

is defined for a general transverse dispersion law«'(k),
whereas Eq.~9! is specific to«'(k)522t cosk.

Whent@V, integral~6! with wM(k) from Eq. ~8! can be
taken by the method of steepest descent in the vicinity of
pointsk* where the derivative ink of the phase of the inte
grand vanishes:

n5j~k* ,EM !5~EM12t cosk* !/V. ~11!

Equation~11! can be interpreted as the classical conserva
law of the kinetic,22t cosk* , and potential,nV, energies
of electron. If the coordinaten belongs to the classically
allowed region@(EM22t)/V,(EM12t)/V#, thenk* is real;
otherwise,k* is complex. Real solutions of Eq.~11! describe
classical electron trajectories in the phase space (n,k* ).
WhenEM.2t, the trajectory lies entirely within the regio
n.0, and does not cross the boundary of the crystal an
50 @curvea in Fig. 1~a!#. When22t,EM,2t, the trajec-
tory reaches the edge@curveb in Fig. 1~a!#. These two types
of classical trajectories correspond to the bulk and the e
quantum states of electrons. The classical motion is perio
both for the bulk trajectory, because the end pointsk*
56p correspond to the same state, and for the edge tra
tory, because elastic reflection at pointkB reverses the sign
of k* and transfers the electron back to pointkC . Thus, we
expect the WKB quantization condition to apply in bo
cases:

E j~k,EM !dk52p~M1g!, ~12!

where21,g<0 is a constant, and the integral represe
the phase-space area enclosed by the classical trajectory
the bulk and the edge trajectoriesa andb in Fig. 1~a!, these
areas are shaded vertically and horizontally. Contrary to R
8, we find well-defined WKB quantization areas for both t
bulk and edge trajectories.

To derive quantization condition~12! for our model for-
mally, and to find the constantg, we need to apply the
boundary conditions properly. Integral~6!, with wM(k) given
by Eq. ~9!, converges only if the ends of the integratio
contour extend to infinity within the shaded areas in Fig.
where Im sink,0, andwM(k) tends to zero at infinity. The
right boundary condition in real space,fM(n)→0 at n

FIG. 1. ~a! The bulk~curvea) and the edge~curveb) classical
trajectories of electrons in the phase space (n,k* ). The coordinate
n is confined between (EM6t)/V for the bulk state and betwee
(EM1t)/V and 0 for the edge state.~b! Solid lines: Classical prob-
ability distributions for the two trajectories shown in panel~a!.
Dots: Quantum probability distributionsufM(n)u2 of the two wave
functions corresponding to the two trajectories.
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→1`, is satisfied provided the contour of integration sta
in area I and ends in area II in Fig. 2. Indeed, in the clas
cally inaccessible regionn→1`, solutions of Eq.~11! are
imaginary. One of them,kA5 i arccosh(n8V/2t), wheren8
5n2EM /V, is represented by pointA in Fig. 2. The con-
tour of integration connects regions I and II by pass
through pointA. Taking integral~6! in the vicinity of point
A along the direction of steepest descent, which is paralle
the real axis ofk in this case, we find:

fM~n!'exp$2n8@ ln~n8V/t !21#%/A2pn8, ~13!

which does satisfy the right boundary condition.
Now let us calculatefM(n) in the classically accessibl

region. In this case, solutions of Eq.~11!, represented by
points B and C in Fig. 2, are real: kC52kB

FIG. 2. Complex plane ofk. Thick lines show the contours o
integration in Eq.~6! for three different positions of the coordina
n.
g
d

-

s
i-

to

5 arccos(n8V/2t). The contour of integration connects re
gions I and II by passing through pointsB andC:

fM~n!5~einkB2 ip/41einkC1 ip/42 i EkB

kCj~k8,EM !dk8!

3wM~kB!/A2p A4 ~2t/V!22n82. ~14!

The factors exp(7ip/4) appear in Eq.~14!, because the di-
rections of steepest descent for pointsB and C are at the
angles7p/4 to the real axis ofk. The integral fromkB to kC
in Eq. ~14! reflects the change of function~8! between points
B and C. For the edge states, the pointn50 is classically
accessible. To satisfy the left boundary condition~5!, the first
line in Eq. ~14! must vanish atn50. This generates quanti
zation condition~12! with g52 1

4 for the edge states:

E
2arccos~2EM /2t !

arccos~2EM /2t !
j~k,EM !dk52pS M2

1

4D . ~15!

Substituting Eq.~10! into Eq. ~15! gives a transcendenta
equation onEM , which has the following explicit solution
for the states on the very edge withM!t/V:

EM5t$221@~3pV/2t !~M21/4!#2/3%. ~16!

The total number of the edge states isnedge52t/V. Equa-
tions ~15! and~16! are similar to the edge-state quantizati
equations for a closed Fermi surface.18

In the classically inaccessible regionn,(EM22t)/V,
solutions of Eq.~11!, represented by pointsD andE in Fig.
2, are complex:kD,E57p1 i arccosh(2n8V/2t). The con-
tour of integration connects regions I and II by passi
through pointsD andE:
fM~n!5~2 i !F12expS 2 i E
kD

kE
j~k8,EM !dk8D Gexp$2n8@arccosh~2n8V/2t !1 ip#%

3exp@2An822~2t/V!2#/A2p A4 n822~2t/V!2. ~17!
e
is
the

ve

r

-

The integral betweenkD andkE in Eq. ~17! proceeds along
the horizontal line@2p,p# and the vertical lines@kD ,
2p# and @p,kE# ~see Fig. 2!; however, the integrals alon
the vertical lines cancel. To satisfy the left boundary con
tion @Eq. ~5!# for a semi-infinite crystal orfM(n)→0 at n
→2` for an infinite one, the first line in Eq.~17! must
vanish. This generates quantization condition~12! with g
50 for the bulk states:

E
2p

p

j~k,EM !dk52pM . ~18!

Substituting Eq.~10! into Eq. ~18!, we recover the Wannier
Stark ladder13 for the bulk states energies:

EM5MV. ~19!

When Eq. ~19! applies, the functionwM(k) in Eq. ~9! is
periodic: wM(k)5wM(k12p); thus integral ~6! can be
i-

taken only from2p to p, because the integrals along th
vertical portions of the integration contour cancel. In th
case, the bulk wave functions are expressed in terms of
Bessel functions J of an integer order: fM(n)
5Jn2M(2t/V).

In all cases, as follows from Eqs.~6! and ~9! with the
contours of integration shown in Fig. 2, the electron wa
functions

fM~n!5E dk

2p
expS ink2 i

EMk12t sin k

V D
5Jn2EM /V~2t/V! ~20!

are nothing but the Bessel functions of a general orden
2EM /V in the Sommerfeld representation.19 The quantized
value of the energyEM is determined by the boundary con
dition ~5!
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J2EM /V~2t/V!50. ~21!

The quantization condition in form~21! was found in Ref.
14. As shown in the Appendix, Ref. 9 would have obtain
the same equation@Eq. ~21!#, if mathematical errors were no
made there.

The electron wave functions can be expressed in term
the Bessel functions@Eq. ~20!# only when «'(k)5
22t cosk in Eqs. ~10! and ~8!, which corresponds to the
electron tunneling between the nearest-neighboring cha
Proper description of the Bechgaard salts requires taking
account higher harmonics of the transverse dispersion la
electron, such as22t8cos 2k, which corresponds to the elec
tron tunneling between the next-nearest-neighbor
chains.20 The WKB method described in this section is st
applicable for an arbitrary transverse dispersion law«'(k),
but the wave functions are not the Bessel functions
more.

III. NUMERICAL SOLUTION AND DISCUSSION

To verify the semiclassical results, we solve Eq.~2! for a
finite number of chainsnmax5150@n edge52t/V525 by nu-
merical diagonalization of the Hamiltonian

Ĥ5S V 2t 0 0 ••• 0

2t 2V 2t 0 ••• 0

0 2t 3V 2t ••• 0

A A � � � A

0 0 ••• 2t ~nmax21!V 2t

0 0 ••• 0 2t nmaxV

D . ~22!

The quantum probability distributionsufM(n)u2 of two
eigenfunctions of Hamiltonian~22! @the dots in Fig. 1~b!#
agree with the classical probability distributions@the solid
lines in Fig. 1~b!# of the corresponding bulk and edge traje
tories shown in Fig. 1~a!. The classical probability distribu
tions are proportional to the square of Eq.~14! and are equa
to 2/Tvy , wherevy52t sink* /\}1/A(2t)22(n8V)2 is the
velocity andT5rdn/vy is the period of classical motion
The numerically calculated eigenvaluesEM of Hamiltonian
~22!, shown in Fig. 3~a!, agree with the semiclassical ene

FIG. 3. ~a! EigenenergiesEM of Hamiltonian ~22! found by
numerical diagonalization in the casesnmax5150 andnedge52t/V
525. ~b! Electron dispersion law«(px ,M ) @Eq. ~4!#. Only the
branches withM51,6,11, . . . ,61 areshown.
d

of

s.
to
of

g

y

gies found from Eqs.~19!, ~15!, and ~10! within less than
1%. As Fig. 3~a! demonstrates, the energy levels are u
formly spaced in the bulk@see Eq.~19!#, with the energyV
@Eq. ~3!# proportional to the magnetic field, but the spacing
different and not uniform near the edges. In agreement w
Eq. ~16!, the spacing of the levels near the edges is sublin
(EM}const1M2/3), and the extremal energy levels withM
51 andM5nmax are displaced relative to the linear extrap
lation of the bulk law@Eq. ~19!# by the amountDE'72t.

Transitions between the energy levelsEM in an external
ac electromagnetic field constitute the cyclotron resonan
Because the penetration depth in metals is short, we ex
the energies@Eq. ~16!# of the edge states to show up in th
surface impedance, as in conventional metals.18 The edge
states were neglected in the theory of the cyclotron re
nance in Q1D conductors.7

The complete, transverse and longitudinal, dispersion
~4! is shown in Fig. 3~b!. It consists of discrete branche
each having a continuous linear dispersion inpx . The Fermi
momenta of the branches,

pF
~M !52EM /vF , ~23!

are defined as the points where the energy«(px ,M ) @Eq. ~4!#
vanishes. The Fermi momenta of the bulk states are spa
uniformly with the distanceG5V/vF5ebH/c, but the
spacing is different and not uniform near the edge. This m
have important consequences for the FISDW state.
FISDW couples the1PF electrons in the eigenstateM with
the 2PF electrons in the eigenstateM2N.4 As long as Eq.
~19! applies, the FISDW wave vectorQx52PF2NG ex-
actly matches the difference between the Fermi moment
these states and opens an energy gap in their spectrumN
branches of the1PF electrons at one edge of the crystal a
N branches of the2PF electrons at the other edge rema
gapless, because they have no partners to couple with.4 Even
though these 2N modes are gapless, electric current is n
dissipated, because the modes are chiral, and the Hall
ductivity is quantized:sxy52Ne2/h, whereh is the Planck
constant.4 However, the wave vectorQx52PF2NG does
not match the Fermi momenta~23! near the edges, wher
their spacing is not uniform. Thus gapless electron pock
should exist there and cause dissipation in the QHE regi
The size of the pockets may be reduced ifQx adjusts to the
spacing of the edge states. The energetics involved in
latter effect requires a separate study.

IV. EQUILIBRIUM CURRENTS AND MAGNETIZATION

Since the transverse eigenfunctionsfM(n) are real, they
carry no electric current across the chains. The current
ried by eigenstates@Eq. ~1!# along the chains is

j px ,M
6 ~n!5eS 6vF2

eAx~n!

cme
D ufM

6~n!u2, ~24!

whereme is the electron band mass, and the signs6 refer to
the6PF electrons. To find the total currentI at the chainn,
we sum Eq.~24! over M and integrate overpx with the
Fermi distribution function~at zero temperature!
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I ~n!52e (
M51

nmax E
2PF2pF

~M !

PF1pF
~M ! dPx

2p\
~6vF!ufM

6~n!u2 ~25!

2
2e2Ax~n!

cme
(

M51

nmax E
2PF2pF

~M !

PF1pF
~M ! dPx

2p\
ufM

6~n!u2,

~26!

where the factor 2 comes from the spin of electrons. I
understood that the wave functionsfM

1(n) and fM
2(n)

should be used when the integration overPx is close to1PF
and2PF , and some interpolating functions should be us
for the intermediate values ofPx . The result does not de
pend on the contributions far from the Fermi surface.

Taking into account that

ufM
1~n!u5ufM

2~n!u, ~27!

we find that the integral*
2PF

PF dPx in Eq. ~25! vanishes. The

only nonzero contribution to this term comes from the dev
tions pF

(M ) @Eq. ~23!# from the 1D Fermi momenta6PF :

e

p\ (
M51

nmax

2EM
1 ufM

1~n!u21EM
2 ufM

2~n!u2. ~28!

Taking into account that the eigenfunctionsfM
1(n) form a

complete basis of Hamiltonian~22! and using the relations
EM

152EM
2 and Eq.~27!, we find that Eq.~28! can be rewrit-

ten as

2
2e

p\
^nuĤun&52

2e

p\
nV, ~29!

where^nuĤun& are the diagonal matrix elements of Ham
tonian ~22!.

Using Eq.~27!, term ~26! can be written as

2eAx~n!

cme
E

2PF

PF dPx

2p\ (
M51

nmax

ufM
6~n!u2. ~30!

Taking into account the completeness relation(MufM
6(n)u2

51 and integrating overPx , we transform Eq.~30! into

2eAx~n!vF

cp\
5

2enV

p\
. ~31!

The two terms~29! and~31! cancel each other, so that th
total electric current on any chainn is zero:

I ~n!50. ~32!

Because the current vanishes everywhere including
edges, there is no orbital magnetization~and no de Haas–va
Alphen oscillations proposed in Refs. 8 and 9! in a Q1D
metal in a magnetic field. Experimentally, no magnetizat
was found in the Bechgaard salts in the metallic state21 ~un-
like in the FISDW state, where energy gaps exist in the e
tron spectrum!.
s

d

-

e

n

c-

V. MAGNETIZATION IN THE CASE OF QUADRATIC
DISPERSION LAW

In Sec. IV, we found that orbital magnetization of th
system vanishes identically. That is a consequence of
linearized longitudinal energy dispersion law of electrons
our model. However, for a nonlinear dispersion law, mag
tization is not necessarily zero. We can crudely estimate
change in the bulk free energy per one electron at zero t
perature generated by an applied magnetic field,DF, in the
following way. DF must vanish whenH→0 and whent
→0. ~When t50, the magnetic field has no orbital effect o
1D uncoupled chains.! BecauseDF does not depend on th
signs ofH andt, it should be quadratic inV5ebHvF /c and
t in the lowest order. To achieve the dimensionality of e
ergy, we need to divide the expression by a power of
Fermi energy«F5PFvF/2. In this way, we find

DF;t2V2/«F
3 . ~33!

Magnetization is obtained by differentiating Eq.~33! in H.
It is difficult to calculateDF explicitly in the case of a

weak magnetic field:V!t!«F . In the semiclassical~WKB!
approximation, the bulk free energy of a Q1D metal does
depend on the magnetic field, even if the longitudinal disp
sion law is nonlinear, as long as the Fermi surface is op
and the electron energy spectrum is continuous, and
quantized.12 This result is related to the Bohr–van Leeuw
theorem, which states that partition function in classical s
tistical mechanics does not depend on magnetic field. Th
in order to obtain a nonzeroDF, it is necessary to go beyon
the WKB approximation, which is difficult.

On the other hand, we can easily calculateDF in case of
a strong magnetic field,t!V!«F , although this case may
not correspond to the Bechgaard salts in realistic magn
fields. In this case, the transverse tunneling amplitudet can
be treated as a small perturbation to the energy spectr
The second-order correction to the total energy of the sys
per one electron at zero temperature due to a perturbatioV
is given by the expression

DF ~2!5
1

Ne
(

a~«a,«F!

b~«b.«F!

^auVub&^buVua&
«a2«b

, ~34!

where Ne is the total number of electrons, and the sum
taken over the energy eigenstates below and above the F
energy, labeled by the indicesa andb, respectively. Treat-
ing the transverse tunneling amplitudet as the perturbation
V, and taking into account that its matrix elements chan
the longitudinal momentumpx by 6G, ^ak

x8 ,M8uVubkx ,M&

52tdM8,M61d(kx82kx7G), we find that the sum in Eq
~34! is restricted to an interval of the widthG in the vicinity
of the Fermi momentum:

dF ~2!5
4t2

re
E

2G

0 dpx

2p\

1

« i~px!2« i~px1G!
. ~35!

In Eq. ~35!, the factor of 4 accounts for the two Fermi poin
and two spin orientations, andre54kF/2p is the electron
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concentration per one chain. Using the quadratic longitud
dispersion law« i(px)5(PF1px)

2/2me , whereme is the ef-
fective electron mass, we find

DF ~2!52
4t2

re
E

2G

0 dpx

2p\

me

G~PF1px1G/2!

52
t2

V
lnS PF1G/2

PF2G/2D . ~36!

Expanding Eq.~36! in the small parameterG/PF5V/2«F ,
and keeping the first two nonvanishing terms, we find

DF ~2!52
t2

2«F
2

t2V2

96«F
3

1•••. ~37!

The first term in Eq.~37! coincides with the second-orde
correction due to the electron tunneling between the ch
in the absence of a magnetic field. Only this, magnetic-fie
independent, term is obtained, if the longitudinal dispers
law is linearized in Eq.~35!. The second term in Eq.~37!
appears due to nonlinearity of the dispersion law and rep
duces the result of dimensional analysis@Eq. ~33!# up to a
numerical factor. Its negative sign indicates paramagnet
However, because the carriers in (TMTSF)2X are holes with
a negativeme , the orbital response would be diamagnetic
these materials.

VI. CONCLUSIONS

In conclusion, the energy of either a bulk or an edge el
tron state in a Q1D metal is the sum of two terms@Eq. ~4!#,
one of which has a continuous spectrum and the other
crete. The discrete part of the electron energy is determ
by the semi-infinite Wannier-Stark equation~2!. We have
solved the semi-infinite Wannier-Stark problem semiclas
cally and numerically. The WKB quantization condition~12!
of the electron phase space area@Fig. 1~a!# determines the
energies of the edge states with the constantg52 1

4 @Eq.
~15!# and the bulk states withg50 @Eq. ~18!#. The energies
are spaced uniformly in the bulk, but not near the edges@see
Fig. 3~a! and Eqs.~19! and ~16!#. These results may be im
portant for the cyclotron resonance and the QHE in
Bechgaard salts, as well as the finite-size GaAs-Ga12xAl xAs
superlattices in an electric field. We have demonstrated
plicitly that the equilibrium electric currents vanish both
the edges and in the bulk, so no orbital magnetization
expected in a Q1D metal in a magnetic field in the appro
mation of linearized longitudinal energy dispersion law
electrons. We have also estimated the magnitude of orb
magnetization for the quadratic longitudinal dispersion la
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APPENDIX

In this appendix, we use the notation of Ref. 9. Equati
~8! of Ref. 9,

1

2
pMJn~M !J12n~M !5 sin~pn!, ~A1!

can be simplified by using identity~9.1.15! from Ref. 22:

Jn11~M !J2n~M !1Jn~M !J2n21~M !52
2 sin~pn!

pM
.

~A2!

Substituting Eq.~A2! into Eq. ~A1!, we find

Jn~M !@J2n11~M !1J2n21~M !#52Jn11~M !J2n~M !.
~A3!

Using the recurrence relation~9.1.27! of Ref. 22,

Jn11~M !1Jn21~M !5
2n

M
Jn~M !, ~A4!

in Eq. ~A3!, we find

J2n~M !F2n

M
Jn~M !2Jn11~M !G50. ~A5!

Using the recurrence relation~A4! in Eq. ~A5! again, we find

J2n~M !Jn21~M !50. ~A6!

Equation~A6! is satisfied if either

J2n~M !50 ~A7!

or

Jn21~M !50. ~A8!

Equation~A7! is the same as our energy quantization co
dition @Eq. ~21!#. Equation~A8! describes unphysical elec
tron states located outside of the crystal (m<0) and should
be discarded. The two sets of eigenvalues@Eqs. ~A7! and
~A8!# are completely decoupled and do not repel when cro
Thus there should be no gaps in Fig. 2 of Ref. 9, no fra
tional interference between the two sets of energy levels,
no diamagnetic oscillations. Contrary to the explicit transfo
mation given above, the two sets of eigenvalues come
coupled via a constantA in Eq. ~10! of Ref. 9. We conclude
that there must be an error in the ‘‘rather boring calcu
tions’’ mentioned between Eqs.~9! and ~10!, and leading
from Eq.~8! to Eq.~10! in Ref. 9. The conclusions following
Eq. ~10! in Ref. 9 are invalid because of the error in th
equation.
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