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Realistic simulations of single-spin nondemolition measurement by magnetic resonance
force microscopy
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A requirement for many quantum computation schemes is the ability to measure single spins. This paper
examines one proposed scheme: magnetic resonance force micrad¢Bfy), including the effects of
thermal noise and back action from monitoring. We derive a simplified equation using the adiabatic approxi-
mation and produce a stochastic pure state unraveling which is useful for numerical simulations. We also
calculate the signal-to-noise ratio for single-spin measurement by MRFM, using a quantum Langevin equation
approach.
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I. INTRODUCTION setup which measures the cantilever motion and hence pro-
vides information about the spin state. To our knowledge, the

Single-spin measurement is an extremely important chalback action of the measurement device and the effect of the
lenge, and necessary for the future successful developmeftitermal noise on the dynamics of the cantilever-spin system
of several recent spin-based proposals for quantumfor the single-spin detection problem by MRFM have not yet
information processingl—5]. There are both direct and in- been investigated systematically. In this paper, we include, in
direct single-spin measurement proposals. The idea behirRir @nalysis, a measurement deviadiber-optic interferom-
some indirect proposals is to transform the problem of de_ete!) to monitor the position of the cantilever. We co_nS|der
tecting a single spin into the task of measuring charge trans/aTious rglevant sources of noise and calculate the signal-to-
port [2,6], since the ability to detect a single charge is now0Ise ratio of the output photo_cqrrent (.)f the measurement
available. For direct single-spin detection, magnetic resodievice. We also develop a realistic continuous measurement
nance force microscopfMRFM) has been suggestéd—9] model and discuss the apprppmaﬂons and condmon; to
as one of the most promising techniques. To date, the MRF c_hleve a guantum nondemolition measurement of a single
technique has been demonstrated with sensitivity to a fe pin by MRFM. Finally, we present some simulation results

X Wt the dynamics of the single-spin measurement process.

hundred spin$10,11].

In this paper we discuss how to read out the quantum state
of a single spin using the MRFM technique based on cyclic
adiabatic inversion(CAl) [9,10,13. In this CAl MRFM A schematic illustration of the MRFM setup is shown in
technique, the frequency of the spin inversion in the rotating=ig. 1. A uniform magnetic field, points in the positivez
frame is in resonance with the mechanical vibration of andirection. A single spin is placed in front of the cantilever tip
ultrathin cantilever, allowing it to amplify the otherwise ex-
tremely weak force due to the spin. These amplified vibra-

II. THE MEASUREMENT SCHEME

tions can then be detected by, e.g., optical methods. . |RF coil
Previous studief8,9] of the dynamics of single-spin mea- magnetic
surement by MRFM considered only the unitary evolution of tip
the spin and the cantilever system, without including any \.
e

effects of external environments or measurement devices.

Only recently, the effect of thermal noise environment on the
dynamics of the spin-cantilever system in the MRFM was
studied[13] by using the Caldeira-Leggett master equation
[14] in the high-temperature limit.

There is, however, a macroscopic device in the MRFM
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FIG. 1. Schematic diagram of the MRFM setup.
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which can oscillate only in the direction. A ferromagnetic  in the S, representation, we can rewrite this initial state in the
particle (or small magnetic materiainounted on the canti- basis of the instantaneous eigenstateAsgoas
lever tip produces a nonuniform magnetic field or magnetic-

field gradient of ¢B,/dZ), on the single spin. As a result, a
reactive force(or interaction acts back on the magnetic can- x(0)=aegv 1 (0))+betv_(0)), 5
tilever tip in thez direction from the single spin. The origin
is chosen to be the equilibrium position of the cantilever tipWhere
without the presence of the spin.

In CAl, the cantilever is driven at its resonance frequency
to amplify the otherwise very small vibrational amplitude. ag=a cog0y/2)+bsin(0y/2), (6)
This is achieved by a modulation scheme using the fre-
guency modulation of a rotating radio-frequengf) mag-
netic field in thex-y plane. In this case, the rotating RF field
can be represented a$;,=B;codowt+Aw(t)], By
=—B;siMwt+Aw(t)], where the frequency modulation and ®,=0(0) is the initial angle between the effective
Aw(t) is a periodic function in time with the resonant fre- magnetic field and thezaxis direction. This implies
quencyw, of the cantilever. In the reference frame rotating tarf @ (t)]=BS"(t)/BE"(t) = — &/f(t). It then follows from
with B,, the spin-cantilever Hamiltonian can be written as the adiabatic theorem that the spin state at timean be

b= —asin(®y/2) +b cog®y/2), 7

q written as
HsAt)=H,—7% oL~ 0= gAo(t) S,~fw,S,
i t
9B,\ ~. x(t)=aeﬁ|v+(t)>exp(—H )\+(t’)dt’)
_gﬂ(ﬁ) ZS,, (1) 0
0

t

+beﬁ|v(t))exr{—;i— )\(t’)dt’), ®)
0

wherew, =guB,/h and w;=guB,/h are the Larmor and
Rabi frequencies, respectiveB; includes the uniform mag-
netic field By and the magnetic field produced by the ferro-
magnetic particleg and u are theg factor and the electron

or nuclear magneton, respectively; and

wherel .. (t) are instantaneous eigenvalues. So the probabili-

ties of finding the spin to be in the instantaneous eigenstates

lv.(t)) are|ac? and|beq|?, respectively. Since the coeffi-

A 1. mwzmA cientsasf and b.s are time independent, the probabilities

szﬁp"# TZZ (2)  |aes|? and|beg|? remain the same at all times. This provides
us with an opportunity to measure the initial spin state prob-

abilities at later times.

How do we measure these spin state probabilities? The
idea is to transfer the information of the spin state to the state
of the driven cantilever. In the interaction picture in which
the state is rotating with the instantaneous eigenstates of the
Aft)=F,— 2728+ F(1)5,— 65, 3) spin Haij'Eonian, the spin-cantilever interaction can be. writ-

ten as %ZS,cog0O(t)]. As a result, the phase of the driven
where f(t)=d[Aw(t)]/dt, »=(gu/2)(dB,/dZ),, and e cantilever vibrations depends on the orientation of the spin
=fiw;. We will discuss in detail the rotating picture and States. Suppose that the initial state is a product state of the
adiabatic approximation for the spin-cantilever system in thecantilever and spin parts. At a later time, due to the interac-
next section. tion between them, the total state becomes entangled. Moni-

In the following, we briefly describe the basic principle of toring the phase of the cantilever vibrations will give us in-
the single-spin measurement by CAI MRFM. In the caseformation about the spin. Numerical simulatioisee Fig. 3
where the adiabatic approximation is exact, the instantaneousdicate that as the amplitude of the cantilever vibrations
eigenstates of the spin Hamiltonian in the rotating frame ofncreases with time, the phase difference in the oscillations
the B, field are the spin states parallel or antiparallel to thefor the two different initial spin eigenstates%f approaches
direction of the effective magnetic fiel®®f(t)=(e,0, 7. In other words, the measurement of the single-spin states
—f(t)), denoted a$v - (t)), respectively. We define an op- can be achieved by monitoring the phases of the cantilever
eratorS, for the component of spin along this axis. Note thatVvibrations at some later time Phase-sensitive, optical ho-
the initial spin state in the laboratory frame has the saménodyne measurements of the cantilever vibrations can be
expression as the initial state in the rotating frame. Starting aerformed using a fiber-optic interferometer. The main pur-

a general initial spin statéin the laboratory or rotating Pose of this paper is to present a realistic and detailed analy-
frame of sis of the single-spin measurement scheme, including the ef-

fects of the measurement device and other relevant sources
x(0)=a|T)+b|]) (4)  of noise.

is the Hamiltonian of the cantilever in isolatidine., with no
external magnetic field coupling it to the spinFor
=w_, wWe arrive at an effective cantilever-spin Hamiltonian
of the form
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Ill. THE ROTATING PICTURE AND THE

We can define #ocked spimperatoréL(t)
ADIABATIC APPROXIMATION

We assume an effective cantilever-spin Hamiltonian of S (=0 DS.0«D T 16
form (3) where for the moment we Idi(t) and e be arbi- SO=UOSUO] (19

trary, andH, is the Hamiltonian given by Eq2). It is useful ) ) . ~
to group this into three terms in terms of this, the equation of motion fpy) becomes

HsAt)=Hz+H,+Hg1), ©) d|g(t))
o :——HZ|¢(t))+ zsL(t)|¢ (17)

where

=-29Z8,, Unfortunately, it is difficult to get an exact solution for
(= F (1) o 10 Ug(t) for a general functiorf(t). This means that it is also
sO=FUS,~ 5, (10 difficult to derive an exact expression f& (t), and the

The state of the cantilever-spin system evolves according ﬂ:_ptatlng picture(15), while formally correct, is not very help-
the Schrdinger equation
However, while we cannot easily find an exact expression

dlg(t)) _ i Byt i 11 for Us(t) for generalf(t), we can easily find aapproximate

dat A sA|¥(D)). (1D solution for a large class of functions. Suppose that large

o _ . andf(t) is slowly varying, so thatf (t)|,e>|f’(t)/f(t)| for

In realistic cases, the spin part of the quﬂton(eepre- typical values off () andf’(t). Then,FA(t) is also slowly
senting precession under the magnetic figiives an evolu- varying, and if a spin begins in dnstantaneous eigenstate

tion which is very rapid compared to the reaction time of theof Hs(t) it will remain close to an instantaneous eigenstate
cantilever. It therefore makes sense to switch to an interac-

tion picture in which the state is rotating along with this ©f H(t) for all times by the adiabatic theorem.
precession. We do this by introducing @artia) time trans- The instantaneous eigenstatestbf(t) are
lation operator

. i (e Hs®lv- ()= a®ve(t)==ND)|v.(), (18
Ug(t)=:exp— ﬁ[f Hs(t')dt’}:, (12
0
where
where : : indicates that the integral is to be taken in a time-
ordered sense; this unitary operator obeys the differential _
equation At = V(L) + &%,
digt) i~ .
———=— —Hq(t)U4(1). (13) (1)) = &
dt f SEs lv(1)) J(f(tm(t))zﬂzm
We then introduce the stat&(t)) in the rotating picture, B TOEIN it 9
[0)=0L0)|p(v)), (14) VEDFA0)+e?

with |(t)) the solution of the original Schdinger equation
(11) at timet. The evolution equation fdr?p(t)) is

d|(t dOt (
Itg(t» () + Okt |w( )

We use these instantaneous eigenvectors and eigenvalues to
define an approximation to the unitary operalf.tg(t):

Oyt =Te v, (1)) (v.(0)]e *O+Talv_(1)

I i X(v_(0)]e'*V, (20
= Z0LOAO (1)~ 204D AsAD ()

| i with the accumulated phase
== 7H2[u(0) = [04OA 050 [(D)

| o (D(t)zift)\(t’)dt’. (21)
_ 7 ~ 77" St a0 ~ ﬁ 0
== Hzld()+ =Z[Us(HSUsO][9(D).

(15 Note that®(t) obeysd®(t)/dt=\(t). This implies that
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doyn i |
—a %Mt)' ®lv (H))(v(0)]e 'O
+ %A(t)i@)|U,(t)><v7(0)|eicb(t)

e M<v+(0)| -io(

i B )

(v (0)]e*

i -
PLEOIAG

'I*®d|v+(t)>

(v4(0)]e”'*®

+|A®d|v (t)>

(v_(0)]e'®®, (22

which has the form of Eq(13) plus some additional terms.
From definition(19) of |v-(t)), we see

d|v+(t)> L1 oe df
dt 2

2 A%(t) dt

lv=(1)). (23

Provided thaff (t) is slowly varying, the additional terms in
Eq. (22) will be small.

PHYSICAL REVIEW A68, 032301 (2003

f(t) .

ms - W{Sx cog2d(1)]

—§) sif2®(t)1}.

(001804t =—
27)

|v+<0)>d<”+(t)| Sie0)

+|U <v ( )l |(I)(t)

0) —— Ogt)

ie

e $ (5 s (0] + & cog20(1)1)
(28)

Substituting Eqs(26)—(28) into Eg. (25), we get

f(t) .

d| (1) i
>:_%HZ|¢(t)>+ % )\(t)sz|¢(t)>

dt

2in. &
+ 5 Ly (S cog 20 (1)

—“s;sirm(t)]}laf(t»

&

Just as before, we can define a rotating picture; now using

the unitary transformatiot) (1),
|9(D)=Ugt)]w(1)).
This gives us a new evolution equation @'):

dlg(t)) _d0gn]" |¢ )

(29)

at ar 1O+ 00T
.. 2in. ., e .
==+ Hz|u(0) + —=Z(0g(]'S040)[ (1))
+|® |U+(O)> <U+( )| —id(t)
d{v _(t
+|z»,<0>><vd—t()| OO0l (29

At this point, it is helpful to introduce a new set of spin
operators

§=31®(v.(0)){(v_(0)|+]v_(0))v,(0)]),
5= §®(| (0 +(0)|=[v+(0))v_(0)]),
§,=312(v+(0))v+(0)|—[v_(0)){v_(0)]). (26)

Using definition(20) for U’S(t), we can solve for the various
terms in Eq.(25):

+8§ cog 20 (1) ]} 4(1)). (29

Note that this equation is still exact—it is equivalent to
the original Schrdinger equatior{11). However, we can see
that if | f(t)|,e are large, thed (t) will be a rapidly growing
function, and the last two terms of ER9) will oscillate
very rapidly compared to the first two terms. Over a short
period relative to the response time of the cantilever they
will essentially average away to nothing. In this limit, there-
fore, we can reasonably make a rotating-wave approxima-
tion, to get the approximate evolution equation

dlg() i 787
g =~ 7 Az 29[ f N DIZE} (). (30

This is equivalent to making an exact adiabatic approxima-
tion, as described in Sec. Il. We can see how this approxi-
mation compares to the complete Hamiltonian for a reason-
able set of parameter values in Fig. 2. This set of parameters
was chosen to match those of Bermeinal. [9]—see Sec.

VII for further details on the simulation. A comparison
shows that our results match their unitary simulations to a
good precision. If the initial state is a Gaussian wave packet,
it remains very close to a Gaussian at later times, just as in
Ref. [9]; indeed, under the approximate Hamiltonian the
state remains an exact Gaussian at all times. For the duration
of our numerical simulations, the wave packets of the full
and approximate equations remained virtually indistinguish-
able.
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FIG. 2. Mean cantilever positiofZ) vs t for the complete and
rotating-wave Hamiltonians.

We should point out, however, that while the parameters
of the cantilever and driving force are plausible for near-term
experiments, the initial condition shown is atypical. Gener-
ally, thermal noise will cause the cantilever to begin with a
rather higher amplitude than that shown. In this case, it will
take longer for the phase difference between the two spin
states to become fully evident. This might be important if
spin-relaxation effects are taken into account. 15 R

For the rest of this paper we will be using the rotating- 1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2
wave approximation and representing states in the rotating t(ms)
frame. For simplicity, we henceforth omit the accent from
the statd ).

In this rotating-wave apprO)fimation, if the spin begins in £\ 3. Mean cantilever positiofZ) vs t for initial spin up and
an instantaneous eigenstate t§(t), it will remain in an  gown in theS, direction.
instantaneous eigenstate at all times. If it begins in a super-
position of the two eigenstates, the spin and cantilever deyhere the parameters are
grees of freedom will become entangled, with the two com-

<Z> (pm)

ponents of the wave function corresponding to the two spin r
directions remaining undisturbed for all times. Monitoring T om’
the position of the cantilever then serves as a nondemolition
measurement of the spin. 5
Note that the corrections to the adiabatic approximation = , (32)
include terms which can flip the spin. These terms must re- 2y/mkT

main small for the system to be a true nondemolition mea- . ) . .
surement. The result of the spin measurement manifests itsdff 1S the cantilever mass], is the temperaturek is Boltz-

as ar phase shift in the oscillation of the cantilever. We can™ann's constantor the equivalent for our system of unjits
see this in Fig. 3. andT is the strength of the coupling to the thermal bath. We

can interprety,, (with units of inverse timpas the dissipa-

tion rate andé (with units of length as the thermal de Bro-
IV. THE THERMAL ENVIRONMENT glie wavelength.

Unfortunately, in practice we cannot treat the cantilever as A feature of this equation is that it does not necessarily
an isolated system. It is coupled at least weakly to the vibraPre€Serve the positivity op on short-time scalegthough at
tional modes of the bulk, and is therefore subject to dissipalond times itis well behaved15]. This arises because of the
tion and thermal noise. Since the cantilever can be treated &PProximations which are made in the derivation, which be-
a single harmonic oscillator, we can model the effects of thi€OMe invalid at very short times. While this may be physi-

thermal bath by the well-known Caldeira-Legggtt] mas- cally unimportant, it can be inconvenient; in particular, if we

ter equation in the high-temperature limit: wish to unravelthe evolution into a stochastic Schlinger
equation[16] (as we will show in Sec. V| it is necessary to

start with a master equation in théndblad form[17]

Ym 2 =

_[Zl Z! ]!

0 [Z.p]

(31

,3:—;L—[Hsz(t),p]—l%[i{ﬁ,p}]— A S
p:—%[H,p]‘F;[ZLjPLjT_{LjTLJ’p}] 33
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for some Hermitianq and a set of genera]indb|ad opera- cause of the minOSCOpiC scale of the motion, this is not so
tors{I:j}. The Caldeira-Leggett equatidBl) is not of this easily done. One approach is to use optical interferometry to

form, which is why it can violate the positivity gf. me:surﬁ the g:ar'1:t!lev§r &osnmnt.ll f ide of
The exact quantum Brownian-motion master equa‘uon S shown in ™ig € cantiiever forms one side ot an
was shown[15] not to have the Lindblad form, but rather optical microcavity and the cleaved end of the fiber forms

requires time-dependent coefficients to ensure the positiwt e other side. A?’ the cantilever moves, th_e resonant fre-
of the density matrix at short times. However, by keeping uency of the cavity changes. Because the time scale of the

more terms from the high- or medium-temperature-limit ex_canl'ulevers mOEIOI”I t'Sﬂ\]’ eryf;ontg cc;n:r?_argd ttr? th((aj_o%tlct:gl It}m_?
pansion in a consistent way, Bio[18] showed that the scale, we can freal the efiects of this in the adiabalic imi

Caldeira-Leggett equation can be replaced by another mast Pe cavity mode is also subject to driving by an external
equation whichis of the Lindblad form, and which agrees aser, and has a very high loss rate. The full master equation

with it except at very short times when the equation’s valid- [19] for the cantilever-spin-cavity system in the interaction
ity is questionable in any case. This is done by adding a tern‘?ICture is

to Eq. (31) of the form — (y,,¢%/242)[p,[p,p]]. The proce-
dure is analogous to completing the square. If we choose thep=— z [Hsz(t) pl+2LplT—LTLp—pLTL—i[E(aT+a)
ansatz

+aa(A+«2),p]+ (y/2)(2apa’—atap—pa'a),
(39

L=AZ+iBp (34)

with real A,B, plug it into Eqg.(33), and equate it to the A A
Caldeira-Leggett equatiof81) plus the additional term, we whereH§At) andL are the Hamiltonian and the Lindblad

get operator for the cantilever and spin given by E@7) and
. _ . s prn (38), E is the strength of the laser driving, is the detuning
p=—(ilh)[H,p]—ATZ,[Z,p]]-Bp,[p,pl] from the “neutral” cavity frequency,x is the coupling

strength of the cantilever to the cavity mode, apdis the
loss rate of the cavity.
Suppose now that we perform a homodyne measurement
=—(i/h)[AsAt),p]— —[Z (Z, p]]_ [p [p.pl] [20,21] on the light which escapes from the cavity. We would
like to replace Eq(39) with an equation for theonditional
| evolutionof p, conditioned on the output photocurrep(t).
Ym ~ 5 s~ 5 o~ o~ iti i - .
+ —m(ppZ—pr—pr+ppZ), (35) The condltlona_l evplutlon equation for our system then be
h comes[21,22 (in 1to calculus form

+iAB(—2Zpp+Zpp+pZp+2ppZ— E)Zp—pf)i)

which implies that i . U ~in
dp=—%[Héz(t),p]dt-l-(ZLpLT—LTLp—pLTL)dt

A=y l2¢2,
_irTE(AaT+ Ay 4+ AaTA 5 Aoat
B=\y(Z2h2, i[E(a'+a)+a'a(A+«Z),pldt+(y./2)(2apa
P ananl A —éTép—péTa)dt-l-\/yced(ép-l-péT—(é-l—éT>p)th,
H=HsAt)+(yn/2)(Zp+pZ)=HgAt). (36) (40

So the Lindblad operator for this equation is . - .
P g where O<ey<1 is the detector efficiency ard\V, is a real

[ = m[(1/€)2+i(€/ﬁ)f)], (37) stochastic differential variable which obeys the statistics
and the effective Hamiltonian, going to the rotating picture M[dW]=0, M[dWdW,]=4(t—s)dsdt  (41)
and making use of the approximation derived in Sec. lll, is

with M denoting an ensemble average. This noise is related
1. 2 to the output photocurrefif0—22

") Mwp, An
Hsdt)= 5 -p*+ —— 2= 2 f(D/N(1)]Z8,

dW
An An I(t)=p8 'yced<a+a >t+ Yc€d dt (42)
+(ym/2)(Zp+p2). (38)
In order for the cantilever to be an effective measuremeny/hereg is a constant giving the device’s range of response.
device, the loss rate must be very low;,> . We want to operate in the “bad cavity” limit wherg.
>w,,. This means that the cavity mode will approach equi-
V. THE EEEECTS OF MONITORING librium on a time scale very short compared to that of the

cantilever’'s motion, so that the cavity mode can be adiabati-
In order to serve as a measurement scheme, we must hagally eliminated[19,21-22 from this equation, leaving an
some way ofmonitoring the motion of the cantilever. Be- equation in terms of the spin and cantilever position alone.
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Let the detuning vanishy — 0, and the coupling to the [ © b e o
cantilever be very small. If we initially neglect this coupling dp1={ = 3 [HsAt),p1]+2LpsL —L'Lpy—psL 'L |dt
altogether, we can solve for the steady state of the cavity

mode in isolation from the cantilever: R E2 .
—ikZp,dt————[Z,p,]d
—i[E(a"+a),p]+ (y/2)(2apa’—a'ap—pa'a)=0, Ye
e ~ (72 padt+yceu(pz— pa Tr{pa+ p1h AW,
(ap+pa'—(a+a'yp)=0, (43
(50)
which implies thatp=|a){ ao|, Wherea|ag)= ag|ay) is a i
coherent state with dp2=( - %[H'Sz(t),pz]+2|:p2|:T— LT pp—poL L |dt
2IE ,
ag=— —. (44) , E2| . 2kE . . .
Ye i+ [Z,p,]dt— ——(Zp;+p12)dt
Ve Ve

Now let us restore the coupling between the cantilever .
and the cavity mode. If this coupling is very small, then the — Yep2dt—vyceap2 Tr{p1+ p1}dW,. (51
state of the cavity mode will remain very close to statg). . . S
In this case, it is very useful to switch todisplaced basis Both p, andp, contain damping terms, which imply that
[19,21,2 for the cavity mode. We switch from the operators they will remain small at all times, providedZ is suffi-
a,af to displaced operators ciently ;mall compared toy. . . (Thls also implies that our

ansatz is reasonable for sufficiently smal)
b=a—ay By making use of the above equations, we can find the
' evolution equation for the reduced density majpie:

b'=a'—af, (45) dpsAt)=dpo(t)+dpa(t)

anddisplaced number states N AL aga
:(_ﬁ[Hsz(t)aPsﬂ"‘ZLPSZLT_LTLPSZ

b™b|n)=n|n). (46) ,
[Z,psZldt

Rl

Obviously,|0)=|aq) and|1)=a'|ag)— af | ag). ~Psz = ¥2

We now make the ansatz of keeping the two lowest dis-
placed number staté®,1) of the cavity mode and neglecting
the res{19,21,23. We then write the full density matrix for

the spin-cantilever-cavity system as

—pildt—ik[Z,p,]dt

+\ye8alp1t pi—pszTHps+pih) AW
p(1)=po(t)@[0)(0]+ pa(H) ®[1)(0]+ pi(H) @ ]0)(1| (52

+po(t)®|1){(1], 4 N
potye (1 47 If we keep only terms to second order #Z we can neglect

wherepy ; , are operators which act on the Hilbert space ofthe p2 term. This leaves only the terms proportionaldp
the cantilever and spin, ang , are self-adjoint. The reduced +p1, which we need know only to leading order kY.
density matrix of the spin-cantilever system alone is obtainedProvided (as we have already assumetat the cantilever

by tracing out the cavity mode, yielding moves slowly compared to the time scale setypyand that
xZ can be treated as small, then to leading omder van-
psAt)=po(t) + pa(1). (48) ishes;p, remains in an approximate equilibrium state. If we

make use of this assumption we dagain to leading order

If we substitute definition$45) and (47) into the stochastic solve fOI‘plipIZ

master equation(40) and collect terms, we get a set of

coupled equations in the operatgrg; »: AKE

: p1+pI~——yz {Z,psz,
dpo=| = #[AsAt).pol+2Lpol =L Lpo—pol 'L |dt

N 4kE .
4ikE? 2kE . . p1—p1~——[Z,pszl, (53
- [Z Ye
Ye
+ + which when inserted into Eq52) gives us a closed evolu-
+Vveea(prt p1—po Tr{p1+piH)dW, (49 tion equation forps:
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i o to zero, and we would be left with an ordinary deterministic
dPsz(t)=( —g[H'sz(t).Psz]JrZLPszLT—LTLpsz master equation for the cantilever and spin. It is for this
reason that the stochastic master equation is therefore often
o ikE2 referred to as amnravelingof the average master equation.
—pSZL*L) dt— ———[Z,psz]dt For numerical purposes, it is often much easier to solve an
Ve equation for gpure state vectorather than a density matrix
2e2 [16,23. It is therefore useful to unravel E¢B5) still further
8k°E° . . 4kE : . .
_ [Z,[Z,ps]ldt+ \/E_ to an equation wh|c.h. preserves pure states. We do this by
ye yZ introducing two additional stochastic processes to account
R R R for the thermal noise and the inefficiency of the detector.
X(ZpsztpsAZ—2pszTH{ZpsA)dW,. (54) We introduce the new master equation
(Note that we have absorbed a factor-of into dW,.) 5

Examining the terms in Eq54), we see that by eliminat- 4 t)=— '_ At dt+ o ped T LI
ing the cavity mode we get another effective term in the psAl) ﬁ[ ef(t).ps7] ,2'1( iPszoj—Hikipsz
Hamiltonian and another Lindblad operator. We can there-

fore write this stochastic master equation in the form —psA L dt+V2[ (L —(L1))psz
2 +psAL1—(La)1dWai+ V2eg (Lo —(L2))ps2

i . A ap onge
dpsdt)=— 7 [Hen(D).pszldt+ 2, (2Lipsd [~L]Ljpsz N
= +psALo—(L2)) [dWp + V2(1-eq)

Pt P P N R R R
~psajLj)dtt e (La=(La)psz XU(Lo—(Lo))psztpsdLo—(L2)1dWy, (58)
+psAL— (L)) ]dW,, 55
psdLo~(L2))ldW, ®9 where the Hamiltonian and the Lindblad operators are the
where we define same as in Eq(56) and we now have three independent
. A . noise processes represented by stochastic differential vari-
L=y /2 (L) Z+i(€/h)p], ablesdW,;, dW,;, anddWs;; which satisfy
L= \8k*E? y2Z, M[dW,]=0, M[dW,dW,]=38(t—s)s;dsdt (59
- 1., Mo, oa KE?, If we take the mean of Eq58) over dW;, and dWj,, we
_ a2 ms2 ’ 1t 3t
He(t)= 2mp + 2 2527 f(OINMD]ZS, + 2 <2 recover Eq.(55). We can think of the additional stochastic

Ye . . .
processes as representing fictitious additional measurements,

+(ym/2)(Zp+p2). (56)  Whose outcomes we average over to recover the state which
is conditioned on thactual measurement.
Note that the term 4E2Z/+?2 is a constant force, which just ~ However, Eq(58) has a great advantage over £5p). If
displaces the equilibrium position of the cantilever. It can bePsz S initially a pure states,=|s2)(¥s, it will remain a

eliminated simply by changing the origin & andis in any pure state at all times, the state, of course, depending on the

case small for reasonable values of the parameters. The oiiochastic processéd;, W,, andWs;. We can recover the

put from the homodyne measurement now corresponds to $P'ution of Eq.(55) by averaging
measurement of the cantilever positin):
o) psAD) =M, w.l|#sA) ) FsAD)|]. (60)
8edKE ~ dWw,
(Dt yea g |- (67

(=5 It would be useful to replace Eq58) with an explicit

evolution equation fofisy) instead ofpsz. This equation is

As we shall see in the following section, we can furtherthe quantum state diffusion equation with real nojad,25;
unravel this stochastic master equatiéB) into a stochastic

Schralinger equation for pure states. This further unraveling i 2

provides a considerable improvement in numerical effi- 4 = — Pt dt+ 2ENL =L
ciency, though it does not represent an actual measurement 52 e s2 12::1 (L)L~ 4L
process.

c

_|<|:j>|2)|1//sz>dt+ V2(L = (Lo)) s d Wy,

+v2eq4(Lo— (L)) |[¢hs d Wy
The stochastic master equati@®b) represents the evolu- - N
tion of the cantilever-spin system, conditioned on the photo- +V2(1-eg)(La—(L2)) s dWs; . (61)
current measurement recotg(t). If we averaged over all
possible measurement records, th#, terms would average The nonlinearity of this equation arises to preserve the norm.

VI. PURE STATE UNRAVELING
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\ a/"*rv’ww i

VII. NUMERICAL SIMULATION

We have simulated this system using the € quantum
state diffusion libranf26] to numerically solve both the uni-
tary evolution with Hamiltonian(30) and the stochastic
equation(61). All the figures in this paper were generated

using this software. s s Spinup ——
We chose our parameters based on those used by Berman 9 Spin down -
et al.[9]. These values argn arbitrary unitg
h=w,=m=1,
7=03, 0.6 0.8 1.0
£=400.0, t (ms)
c FIG. 4. Expectation valuéS,) vst for ten different trajectories,
Ym= 0n/Q=10"7, showing the rapid localization of the spin for an initial superposi-
tion state[|v, (0))+|v_(0))]/ 2. We have taken the convention

keT=10, (62)  thatS, has eigenvalues 1/2.
whereQ is the quality factor of the cantilever. The driving AKE?2
force f(t) takes the form =7X 10,

Ye

—6000+300  if 0=<t=<20,

"O=11000sit—20) if t>20. ©3 8Kk’E”
—=0.07.
Y

If we make contact with physical values for actual cantile- ¢

vers used in experiments, we havwg,~10°s™* and m  The first value is the multiplier in Eq57); the second gives
~10 " kg. The value ofkgT above then corresponds to a the equilibrium displacement of the cantilever; the third is
temperature of around 0.1 K, which is within the bounds ofihe coefficient of the Lindblad operatﬁrz.

experimental feasibility, though rather lower than the tem- e guestion we can now easily address is how quickly

peratures used in the current experimdaraund 3 K [11]. . . - .
These are the physical values assumed in plotting the vario&ge state of the spin collapses onto eigenstates, ofin Fig.

figures. Sincen=(gu/2)(3B,/9Z),, the value ofy corre- 4 We plot(S,) for ten different trajectories. We see that in all
sponds to a field gradient of about X0’ T/m, which is  ten cases the spin convergeddl/2 quite quickly, before
higher than the current experiments by roughly two orders of =0.8 ms.

magnitude[11], but hopefully this too will improve with If we compare this with the results of Fig. 3, we see that
time. The cantilever would undergo displacements of about #1€ spin state collapses rather more quickly than the cantile-
nanometer. ver oscillations can respond. We only get a clear output sig-

Alternatively, rather than increasing the field gradient wenal when the two phases are well separated, which does not
could achieve similar numbers by lowering the spring con-occur until nearlyt=1.5 ms. Generically, the difficulty of
stant of the cantilever, for instance, by shrinking the mass ofollapsing the spin state is much less than the difficulty of
the cantilever. Lowering the mass by a factor of 100 has th@btaining an unequivocal readout. _
same relative effect op as increasing the field gradient by a ~ The curves depicted in Fig. 3 are idealized, without the
factor of 10. measurement noise which will always be present in the out-

We then might ask about realistic parameters for thePut current(42) or (57). In Fig. 5 we show what the actual
monitoring. A typical cavity sizel is about a micrometer, Output would look like for the set of parameters we are dis-
with a laser frequency ob.~1.4x 10'*s~%. This cavity is ~ cussing. Note that even with the noise, the two phases
generally quite lossy; reasonable quality factors might be iffésenting spin up and spin doyvare clearly distinguishable.
the rangeQ.~10—100. The paramet& s a function of the [N the following section, we derive an expression for the
laser powerE= Py /ho.=\PIhQ,. For P~1 uW and Signal-to-noise ratio in more general situations.

Q.~100 we haveE~10"s 1. The coupling between the

cantilever and the cavity is given by a geometric factor VIII. SIGNAL-TO-NOISE RATIO
=w/L~1.4x10° (ms) 1. In arbitrary units, this gives ,
o e]sfi cients ' Since we have to detect the effect of a very weak force on

the cantilever by the single spin, we need very high resolu-
8KE tion for the cant_ilever position measurements and a good
=1.9x 1, (64)  control of the various noise sources in the MRFM device. As

Ye described in Sec. Il, the small displacement of the cantilever
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Spinup —— ture with respect td woa'a, to give the following quantum
- 2r p Spin down - i Langevin equations describing the dynamics of the whole
= | 3 ’ system:
=
& ~
S dz(t) 1,
3 g mPW: (66)
2 dp(t) AU e
= T:—mme(t)—mp(t)—hKa (Ha(t)+WmW(t)
kel
2
- +2 f(t)”s’ t 6

0O 02 04 06 08 1 12 14 16 18 2

t (ms) da(t) =—<iwc—iwo+% a(t)—ikZ(t)a(t)—iE

dt
- ' Spinup — .

= 27 Without noise . +Vyaan(t), (68)
2 d3(1)
© =0, (69)
5 dt
Lo R
£ dS(t _ f(, o,
% . at =272 OS, (70)
g dagm . fty,

ol 4t =2 208, (7D)

15 1.55 16 165 1.7 1.75 1.8 1.85 1.9 195 2  |n the the equations, the usual optical input noise operator

t (ms) a;,(t) is associated with the vacuum fluctuations of the con-

] ) _ _ ~tinuum of electromagnetic modes outside the cavity and its
FIG. 5. Simulation of photocurrent output in arbitrary units, ~qrrelation function is given by

including measurement noise, using the parameters of Sec. VII,

with detector efficiencyey=0.85. We have chosen the scg@leso <é_ (t)é-T(t’))= S(t—t'). (72)
that the vertical scale matches that of Fig. 3, and also plotted the n "
expectation value¢Z) without the noisyd\W/dt components. The random forcé/\(t) describes the thermal noise motion

(quantum Brownian motionof the cantilever at temperature
is measured by a fiber-optic interferometer as a phase shift of For the case of an Ohmic environment, the thermal ran-
the interference fringes. We shall analyze the quantum angom force correlation is given bi27]
thermal noise in this homodyne measurement scheme.

The Hamiltonian for the combined system of the spin,
cantilever, and cavity mode, excluding coupling to the envi-
ronments, in the spin-rotating frame is

A hl
MO ) =—[F/{t-t)+iFA(E-t)], (73

where

B=fl 27 W8 4 hoatas AE(ATe o0+ aeiont) o ho
z A(1) ¢ Fi(t)=| dwwcogwt)coth =——=], (74)

0 2kgT

+hra'aZ. (65
Q

(=1 d in(wt 75
Here, w. is the optical frequency of the cavity modeg Fi®) jo © @ sin(wt), (75)

~ w, is the driving frequency of the external laser, and other
terms and parameters have been described in Sec. V. Théth Q) the frequency cutoff of the reservoir spectrum. With-
master equation approach in Sec. IV is valid in high- orout the presence of the external driving force from the spin,
medium-temperature case. Here, we analyze the noise in tlige cantilever-cavity system can be characterized by a semi-
Heisenberg picture, using the quantum Langevin equatioglassical steady state with a new equilibrium position for the
approach that is valid at any temperat{2&]. cantilever, displaced b¥= — x| g%/ (Mmw?) with respect
Using standard techniqué®8,29, the reservoifenviron-  to that with no external driving laser field, and the cavity
menta) variables may be eliminated, in the interaction pic-mode in a coherent state,;) with the amplitude given by
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__TIE whereu;, represents a vacuum white noise with its correla-
¥st= 2+ i (7® " tion function given by
whereA = w.— wo— k2| ag|? (Mw?) is the cavity mode de- (D)) = S(t—t"). -

tuning. By adjusting eithe® or w., the detuning can be set

to zeroA=0. As a resultag=ao=—2iE/y.. Linearizing  we may define an operator corresponding to the detected
the quantum Langevin equations about the steady-state valytput photocurrent

ues and renaming witﬁ(t) ,é(t) the operators describing the
gggil:]um fluctuations around the classical steady state, we |out(t):,3\/E[dout(t)+dgut(t)]

=B{yedat) +a'(t)]— Vyedan(t) +aht)]

dz(t) 1.
“at - mP (7 +\yeea(1—eq) [On(t) +D1(D]}. (87
db(t) Equation(87) is similar to Eq.(42) in that the two vacuum

N r. - -
TR Mg Z(t) — PO~ fik[apa’(t) +aga(t)] noise terms together would give the same value of variance
(shot noisg of the output current as theétW term would. By

R (M., substituting Eq(83) into Eq. (87), the resultant output cur-
+W(t)+277msz(t)’ (78 rent in the bad cavity limit is given by
2 8keyE
da(t R - R T _ =5 2 At
d(t ) __ %a(t)—iKCZOZ(t)'F reain(t), (79 loult)=B| — " Z(t) +\ycedan(t) +ap(t)]
dS(t) +\ycea(1—eq)[vin(H) + (D] ]. (88)
=0, (80
dt
R This equation is also similar to E¢57), obtained from the
dS(t) f(t) - ay master equation approach.
dt _ZWW[ZS”LZ(U]SV(U’ G The Langevin equations fo8, and S| effectively de-
couple from the other equations, since they do not appear on
dS}(t) f(t) . R the right-hand side of the equations for the other variables.
rTE _277W[Zst+ Z(1)]S4(1). (82)  Because of this, they have no effect in our estimate of the

signal-to-noise ratio, and we shall drop them henceforth.
Taking a Fourier transform of the linearized Langevin equa-
tions, we find, from Eq(87), the Fourier component of the
output current as

In the bad cavity limit whereyc>wm,(l"/m),f<2 (i.e., set
[da(t)/dt]=0 in Eq. (79), the dynamics of the field
quadrature,a’(t)+a(t), adiabatically follows that of the

cantllever position: Toul @)= B\ Yol 1~ ) [D1n(@) + D @)
dka 2
ot At = —i 05 2 ra af BeaVve C o Yel|n ~
al(t)+a(t)=—i Z(t) + —=[ain(t) +ap(t)]. PRV e | Telra T
2 7 Flia—yg2| |10t 2 |lan(@)t anlo)]
(83

Thus, monitoring this field quadrature of the cavity mode via + 2 Kao\/7—° f_ikao\/z
a homodyne measurement corresponds to a measurement of m(w%—wz—il“w/m) (io—=1/2)

the cantilever position and hence the state of the spin.

The usual input-output relatidr28,29 gives ~ ~ A -,
pHEOLP *28.299 X [Al(@) — (@) ]+ WM 0) + G(0)8,

], (89)
Aoul( 1) = Vyca(t) —ap(t). (84)

To account for an inefficient photodetector, we model it as #/here G(w) is the Fourier transform of G(t)
perfect photodetector preceded by a beam spliger. The = 27f(t)/A(t). The Fourier component of the mean output
effect of a photodetector of efficieney is equivalent to that ~ current signal is then given by

of passing photons through a beam splitter of transmittance

eq- Then_the Qetected photon fiedd ;, passing thrc_Jugh the |<Tout(w)>|:Bed70(
beam splitter into the perfect detector, can be written as

G(w)| 4
Sl o

2K|ao|

m

douft) = Veg@ou() + V(1—eq)on(t), (85  where
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r g ‘Thermal —
D((D) = ( fw— ﬁ) ( wﬁq_ w2_ i _) . (91) 10 Back-action -~ |
2 m 6 Shot noise -
10
The output current noise power-density spectrum is de- Lg 4
fined as S 10t
g
1 o . £ 100
Soul @)=\ 5 f dTeleU oul Dl ou(t+7) s - ~
2 o 1
- - 001 |
Flou(t+ 7)1 out(t)>G(t)0] ---------------------
t 16*

06 07 08 09 1 11 12 13 14
1 Ia—i(w+o')ty] T Frequency (arbitrary units)
:E fda) e <|out(w Moud @)
FIG. 6. We plot the various terms &,,{(w) VS w, using the
~ ~ , parameters of Sec. VII. The detector efficiencyejs=0.85, as in
+lal @) oyl @ )>G(w)—0}t' (92) Fig. 5. We have chosen the proportionality constgntso that
ycﬁzeﬁzl, and plotted the frequency in arbitrary units wherg
where the subscripG(t)=0 means evaluation in the ab- =1. Note that atw=w,=1 the thermal noise dominates for our
sence of the external driving force from the spin dnd-}, parameters. However, the strength of the shot noise varies relative
denotes the time average owefo calculate this noise spec- to the other noises by &4, so that at very low detector efficiencies
trum, the Fourier transform of the noise correlation functionsshot noise will dominate.

(72—(75) and(86) is needed and given by o ) ) o
ization around the semiclassical steady state and the infinite

(ap(w)al (o)) =278(w+ '), (93)  frequency cutoff}—o. The hightor medium temperature
" limit % w,<kgT can be obtained by approximating
W)W )y =2mhT 0| 1+ coth o] | (et o’ ho h2o?
Mao)Ww'))=2mhT ) 1+coth 2= | |6+ o), hwcotr<— ~2kgT+ 97)
(94 2kgT 6kpT
~ ~t , We plot these three contributions to the noise in Fig. 6 for the
(Vin(@)vip(0")) =270+ o"), 99 simulation parameters given in Sec. VII. We see that at the

oscillator resonance,,, thermal noise dominates.

where in obtaining Eq94) the infinite frequency cutoff limit Let us define the signal-to-noise ratio per root Hertz as

of the Ohmic thermal reservoir spectrufd,— oo, has been

assumed. After some calculations, one can then obtain the |<|A ()]
output noise spectrum as R(w) =~ (98)
5 s VSoul @)
1 h
Sout(cu)=,82e§yc[—+4 M) We are interested in evaluatifg(w) at frequency equal to
€d the cantilever vibration frequenay= w,,. Note that
1
1 1 Q
X — =~
[(7:/2)?+ »?]|D(w)|? ID(wp)] [(7C/2)2+w2m]1/2(w2m)' (99)
2 2
wal K Yelao| T| fo coti‘( ho ) where the quality facto® =mw,,/T". As a result, the mean
m? |D(w)]? 2kgT/ |- output current signal90) at w = w,, is enhanced by a factor

of Qyc/[(vc/2)*+ w3 ]Y? as compared with the=0 case.
(96) - . .
However, a similar enhancement occurs in the back-action

The first term in Eq(96), independent of frequency, is the Noise apd the thermal noisg' terms. In o'Fher.wor(.js, driving
contribution from the shot noise of the photons. It is generthe cantilever atv= w,, amplifies not only its vibration am-
ally small compared to the other terms at the cantilever frePlitudes due to the driving force, but also the noise amplitude
guency for realistic parameters; however’ at very low detecdue to the back-action radiation preSSUre and the thermal
tor efficiencies it will dominate. The next term is the back- Brownian motion(see Fig. 6. We find R(w=wp) can be
action noise on the position of the cantilever by the radiatiorvritten as

(photong. This back action is due to the random way in -,
which photons bounce off the cantilever. The final term is the Riw,)= |G(0mn)|(S])
thermal noise, due to the thermal Brownian-motion fluctua- m WN(wy,)
tion of the cantilever. Equatiof6) is valid at all tempera-

tures. The assumptions made in its derivation are the lineawhere

(100
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[(7/2)%+ 0] [Mw? |2 #2k2y|agl? wherek=maw? is the spring constant of the cantilever. We
N(wm) = ( ) > 2 see, then, that improvement can come either from raising the
4x?egydlagl’ | Q [(7c/2)"+ o] force (by increasing the field gradientlowering the tem-
o perature, or lowering the spring constant.
m
Flhon Con'( 2kBT> (109 IX. CONCLUSIONS

We have derived an approximate description of single-
ratio per root hertz, corresponding respectively to the spin i 3pin measurement by magnetic resonance force microscopy,
the two different st,ates in the rotating frame rfncludlng poth thermal noise and measurement chk action,

- . ) T and used it to produce numerical simulations of a single-spin

Because the driving forcg(t) is periodic,G(w) is equal  measyrement. These simulations use the quantum trajectory
to a sum ofé functions atw = wy,3wm, 5@y, . .. . Averag-  method for open quantum systems. The parameters we as-
ing over a small interval abouiy,, we can integrate over the symed for this simulation were somewhat optimistic; but
o function to get a valugfor our simulation parametersf  given the steady improvement in experimental technique, we
R(wm)~220 s *2 Thus, given a bandwidth of about 1 Hz, believe that measurements of this type will be possible in the
this should be easily detectable by our measurement schemeear future.

As mentioned in Sec. VII, we have assumed a magnetic-field Single-spin measurements would be very useful in the
gradient roughly two orders of magnitude greater than cureonstruction of solid-state quantum computers, in which the
rent experiments and a much lower temperature. A singlepin of an electron represents a single qubit of information.
spin, therefore, would be below the edge of detectability byGiven the great interest in solid-state implementations as a
current experimental techniques. A steady improvement ifpossibly scalable realization of quantum computers, finding
the field strength, temperature, and spring constant of theggractical ways to measure single spins would be very useful.
experiments, however, should soon make single-spin medhe results of our simulations suggest that magnetic reso-
surement possible. nance force microscopy is a very promising approach to this

If the dominant noise source in MRFM arises from ther-difficult problem.
mal Brownian motion of the cantilever, we can estimate the
minimum detectable forcévhen the signal-to-noise ratio is ACKNOWLEDGMENTS
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