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Realistic simulations of single-spin nondemolition measurement by magnetic resonance
force microscopy
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A requirement for many quantum computation schemes is the ability to measure single spins. This paper
examines one proposed scheme: magnetic resonance force microscopy~MRFM!, including the effects of
thermal noise and back action from monitoring. We derive a simplified equation using the adiabatic approxi-
mation and produce a stochastic pure state unraveling which is useful for numerical simulations. We also
calculate the signal-to-noise ratio for single-spin measurement by MRFM, using a quantum Langevin equation
approach.
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I. INTRODUCTION

Single-spin measurement is an extremely important c
lenge, and necessary for the future successful developm
of several recent spin-based proposals for quant
information processing@1–5#. There are both direct and in
direct single-spin measurement proposals. The idea be
some indirect proposals is to transform the problem of
tecting a single spin into the task of measuring charge tra
port @2,6#, since the ability to detect a single charge is no
available. For direct single-spin detection, magnetic re
nance force microscopy~MRFM! has been suggested@7–9#
as one of the most promising techniques. To date, the MR
technique has been demonstrated with sensitivity to a
hundred spins@10,11#.

In this paper we discuss how to read out the quantum s
of a single spin using the MRFM technique based on cy
adiabatic inversion~CAI! @9,10,12#. In this CAI MRFM
technique, the frequency of the spin inversion in the rotat
frame is in resonance with the mechanical vibration of
ultrathin cantilever, allowing it to amplify the otherwise e
tremely weak force due to the spin. These amplified vib
tions can then be detected by, e.g., optical methods.

Previous studies@8,9# of the dynamics of single-spin mea
surement by MRFM considered only the unitary evolution
the spin and the cantilever system, without including a
effects of external environments or measurement devi
Only recently, the effect of thermal noise environment on
dynamics of the spin-cantilever system in the MRFM w
studied@13# by using the Caldeira-Leggett master equat
@14# in the high-temperature limit.

There is, however, a macroscopic device in the MRF
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setup which measures the cantilever motion and hence
vides information about the spin state. To our knowledge,
back action of the measurement device and the effect of
thermal noise on the dynamics of the cantilever-spin sys
for the single-spin detection problem by MRFM have not y
been investigated systematically. In this paper, we include
our analysis, a measurement device~a fiber-optic interferom-
eter! to monitor the position of the cantilever. We consid
various relevant sources of noise and calculate the signa
noise ratio of the output photocurrent of the measurem
device. We also develop a realistic continuous measurem
model and discuss the approximations and conditions
achieve a quantum nondemolition measurement of a sin
spin by MRFM. Finally, we present some simulation resu
of the dynamics of the single-spin measurement process

II. THE MEASUREMENT SCHEME

A schematic illustration of the MRFM setup is shown
Fig. 1. A uniform magnetic fieldB0 points in the positivez
direction. A single spin is placed in front of the cantilever t

,
,

FIG. 1. Schematic diagram of the MRFM setup.
©2003 The American Physical Society01-1
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which can oscillate only in thez direction. A ferromagnetic
particle ~or small magnetic material! mounted on the canti
lever tip produces a nonuniform magnetic field or magne
field gradient of (]Bz /]Z)0 on the single spin. As a result,
reactive force~or interaction! acts back on the magnetic ca
tilever tip in thez direction from the single spin. The origi
is chosen to be the equilibrium position of the cantilever
without the presence of the spin.

In CAI, the cantilever is driven at its resonance frequen
to amplify the otherwise very small vibrational amplitud
This is achieved by a modulation scheme using the
quency modulation of a rotating radio-frequency~rf! mag-
netic field in thex-y plane. In this case, the rotating RF fie
can be represented asB1x5B1 cos@vt1Dv(t)#, B1y
52B1 sin@vt1Dv(t)#, where the frequency modulatio
Dv(t) is a periodic function in time with the resonant fr
quencyvm of the cantilever. In the reference frame rotati
with B1, the spin-cantilever Hamiltonian can be written a

ĤSZ~ t !5ĤZ2\FvL2v2
d

dt
Dv~ t !G Ŝz2\v1Ŝx

2gmS ]Bz

]Z D
0

ẐŜz , ~1!

wherevL5gmBz /\ and v15gmB1 /\ are the Larmor and
Rabi frequencies, respectively;Bz includes the uniform mag
netic fieldB0 and the magnetic field produced by the ferr
magnetic particle;g andm are theg factor and the electron
or nuclear magneton, respectively; and

ĤZ5
1

2m
p̂21

mvm
2

2
Ẑ2 ~2!

is the Hamiltonian of the cantilever in isolation~i.e., with no
external magnetic field coupling it to the spin!. For v
5vL , we arrive at an effective cantilever-spin Hamiltonia
of the form

ĤSZ~ t !5ĤZ22hẐŜz1 f ~ t !Ŝz2«Ŝx , ~3!

where f (t)5d@Dv(t)#/dt, h5(gm/2)(]Bz /]Z)0, and «
5\v1. We will discuss in detail the rotating picture an
adiabatic approximation for the spin-cantilever system in
next section.

In the following, we briefly describe the basic principle
the single-spin measurement by CAI MRFM. In the ca
where the adiabatic approximation is exact, the instantane
eigenstates of the spin Hamiltonian in the rotating frame
the B1 field are the spin states parallel or antiparallel to
direction of the effective magnetic fieldBeff(t)5„«,0,
2 f (t)…, denoted asuv6(t)&, respectively. We define an op
eratorŜz8 for the component of spin along this axis. Note th
the initial spin state in the laboratory frame has the sa
expression as the initial state in the rotating frame. Startin
a general initial spin state~in the laboratory or rotating
frame! of

x~0!5au↑&1bu↓& ~4!
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in theŜz representation, we can rewrite this initial state in t
basis of the instantaneous eigenstates ofŜz8 as

x~0!5aeffuv1~0!&1beffuv2~0!&, ~5!

where

aeff5a cos~Q0/2!1b sin~Q0/2!, ~6!

beff52a sin~Q0/2!1b cos~Q0/2!, ~7!

and Q0[Q(0) is the initial angle between the effectiv
magnetic field and thez-axis direction. This implies
tan@Q(t)#5Bx

eff(t)/Bz
eff(t)52«/ f (t). It then follows from

the adiabatic theorem that the spin state at timet can be
written as

x~ t !5aeffuv1~ t !&expS 2
i

\E0

t

l1~ t8!dt8D
1beffuv2~ t !&expS 2

i

\E0

t

l2~ t8!dt8D , ~8!

wherel6(t) are instantaneous eigenvalues. So the proba
ties of finding the spin to be in the instantaneous eigenst
uv6(t)& are uaeffu2 and ubeffu2, respectively. Since the coeffi
cients aeff and beff are time independent, the probabilitie
uaeffu2 andubeffu2 remain the same at all times. This provid
us with an opportunity to measure the initial spin state pr
abilities at later times.

How do we measure these spin state probabilities?
idea is to transfer the information of the spin state to the s
of the driven cantilever. In the interaction picture in whic
the state is rotating with the instantaneous eigenstates o
spin Hamiltonian, the spin-cantilever interaction can be w
ten as 2hẐŜz8cos@Q(t)#. As a result, the phase of the drive
cantilever vibrations depends on the orientation of the s
states. Suppose that the initial state is a product state o
cantilever and spin parts. At a later time, due to the inter
tion between them, the total state becomes entangled. M
toring the phase of the cantilever vibrations will give us i
formation about the spin. Numerical simulations~see Fig. 3!
indicate that as the amplitude of the cantilever vibratio
increases with time, the phase difference in the oscillati
for the two different initial spin eigenstates ofŜz8 approaches
p. In other words, the measurement of the single-spin st
can be achieved by monitoring the phases of the cantile
vibrations at some later timet. Phase-sensitive, optical ho
modyne measurements of the cantilever vibrations can
performed using a fiber-optic interferometer. The main p
pose of this paper is to present a realistic and detailed an
sis of the single-spin measurement scheme, including the
fects of the measurement device and other relevant sou
of noise.
1-2
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III. THE ROTATING PICTURE AND THE
ADIABATIC APPROXIMATION

We assume an effective cantilever-spin Hamiltonian
form ~3! where for the moment we letf (t) and « be arbi-
trary, andĤZ is the Hamiltonian given by Eq.~2!. It is useful
to group this into three terms

ĤSZ~ t !5ĤZ1ĤI1ĤS~ t !, ~9!

where

ĤI[22hẐŜz ,

ĤS~ t ![ f ~ t !Ŝz2«Ŝx . ~10!

The state of the cantilever-spin system evolves accordin
the Schro¨dinger equation

duc~ t !&
dt

52
i

\
ĤSZ~ t !uc~ t !&. ~11!

In realistic cases, the spin part of the Hamiltonian~repre-
senting precession under the magnetic field! gives an evolu-
tion which is very rapid compared to the reaction time of t
cantilever. It therefore makes sense to switch to an inte
tion picture in which the state is rotating along with th
precession. We do this by introducing a~partial! time trans-
lation operator

ÛS~ t ![:exp2
i

\ F E
0

t

ĤS~ t8!dt8G :, ~12!

where : : indicates that the integral is to be taken in a tim
ordered sense; this unitary operator obeys the differen
equation

dÛS~ t !

dt
52

i

\
ĤS~ t !ÛS~ t !. ~13!

We then introduce the stateuc̃(t)& in the rotating picture,

uc̃~ t !&[ÛS
†~ t !uc~ t !&, ~14!

with uc(t)& the solution of the original Schro¨dinger equation
~11! at time t. The evolution equation foruc̃(t)& is

duc̃~ t !&
dt

5
dÛS

†~ t !

dt
uc~ t !&1ÛS

†~ t !
duc~ t !&

dt

5
i

\
ÛS

†~ t !ĤS~ t !uc~ t !&2
i

\
ÛS

†~ t !ĤSZ~ t !uc~ t !&

52
i

\
ĤZuc̃~ t !&2

i

\
@ÛS

†~ t !ĤIÛS~ t !#uc̃~ t !&

52
i

\
ĤZuc̃~ t !&1

2ih

\
Ẑ@ÛS

†~ t !ŜzÛS~ t !#uc̃~ t !&.

~15!
03230
f

to

c-

-
al

We can define alocked spinoperatorŜL(t)

ŜL~ t ![@ÛS
†~ t !ŜzÛS~ t !#; ~16!

in terms of this, the equation of motion foruc̃& becomes

duc̃~ t !&
dt

52
i

\
ĤZuc̃~ t !&1

2ih

\
ẐŜL~ t !uc̃~ t !&. ~17!

Unfortunately, it is difficult to get an exact solution fo
ÛS(t) for a general functionf (t). This means that it is also
difficult to derive an exact expression forŜL(t), and the
rotating picture~15!, while formally correct, is not very help
ful.

However, while we cannot easily find an exact express
for ÛS(t) for generalf (t), we can easily find anapproximate
solution for a large class of functions. Suppose that« is large
and f (t) is slowly varying, so thatu f (t)u,«@u f 8(t)/ f (t)u for
typical values off (t) and f 8(t). Then,ĤS(t) is also slowly
varying, and if a spin begins in aninstantaneous eigenstat

of ĤS(t), it will remain close to an instantaneous eigenst
of ĤS(t) for all times by the adiabatic theorem.

The instantaneous eigenstates ofĤS(t) are

ĤS~ t !uv6~ t !&5l6~ t !uv6~ t !&[6l~ t !uv6~ t !&, ~18!

where

l~ t !5Af 2~ t !1«2,

uv6~ t !&5
«

A„f ~ t !7l~ t !…21«2
u↓&

2
f ~ t !7l~ t !

A„f ~ t !7l~ t !…21«2
u↑&. ~19!

We use these instantaneous eigenvectors and eigenvalu
define an approximation to the unitary operatorÛS(t):

ÛS8~ t !5 Î ^ uv1~ t !&^v1~0!ue2 iF(t)1 Î ^ uv2~ t !&

3^v2~0!ueiF(t), ~20!

with the accumulated phase

F~ t ![
1

\E0

t

l~ t8!dt8. ~21!

Note thatF(t) obeysdF(t)/dt5l(t). This implies that
1-3



.

in

in

s

to

ort
ey

e-
a-

a-
xi-

on-
ters

n
a

ket,
s in
he
tion

ull
sh-

T. A. BRUN AND H.-S. GOAN PHYSICAL REVIEW A68, 032301 ~2003!
dÛS8~ t !

dt
52

i

\
l~ t ! Î ^ uv1~ t !&^v1~0!ue2 iF(t)

1
i

\
l~ t ! Î ^ uv2~ t !&^v2~0!ueiF(t)

1 Î ^
duv1~ t !&

dt
^v1~0!ue2 iF(t)

1 Î ^
duv2(t)&

dt
^v2~0!ueiF(t)

52
i

\
ĤS~ t !ÛS8~ t !

1 Î ^
duv1~ t !&

dt
^v1~0!ue2 iF(t)

1 Î ^
duv2(t)&

dt
^v2~0!ueiF(t), ~22!

which has the form of Eq.~13! plus some additional terms
From definition~19! of uv6(t)&, we see

duv6~ t !&
dt

56
1

2

«

l2~ t !

d f~ t !

dt
uv7~ t !&. ~23!

Provided thatf (t) is slowly varying, the additional terms in
Eq. ~22! will be small.

Just as before, we can define a rotating picture; now us
the unitary transformationÛS8(t),

uc̆~ t !&[„ÛS8~ t !…†uc~ t !&. ~24!

This gives us a new evolution equation foruc̆&:

duc̆~ t !&
dt

5
d@ÛS8~ t !#†

dt
uc~ t !&1@ÛS8~ t !#†

duc~ t !&
dt

52
i

\
ĤZuc̆~ t !&1

2ih

\
Ẑ„@ÛS8~ t !#†ŜzÛS8~ t !…uc̆~ t !&

1 Î ^ S uv1~0!&
d^v1~ t !u

dt
e2 iF(t)

1uv2~0!&
d^v2~ t !u

dt
eiF(t)D ÛS8~ t !uc̆~ t !. ~25!

At this point, it is helpful to introduce a new set of sp
operators

Ŝx85 1
2 Î ^ „uv1~0!&^v2~0!u1uv2~0!&^v1~0!u…,

Ŝy85
i

2
Î ^ „uv2~0!&^v1~0!u2uv1~0!&^v2~0!u…,

Ŝz85 1
2 Î ^ „uv1~0!&^v1~0!u2uv2~0!&^v2~0!u…. ~26!

Using definition~20! for ÛS8(t), we can solve for the variou
terms in Eq.~25!:
03230
g

@ÛS8~ t !#†ŜzÛS8~ t !52
f ~ t !

l~ t !
Ŝz82

«

l~ t !
$Ŝx8 cos@2F~ t !#

2Ŝy8 sin@2F~ t !#%. ~27!

Î ^ S uv1~0!&
d^v1~ t !u

dt
e2 iF(t)

1uv2~0!&
d^v2~ t !u

dt
eiF(t)D ÛS8~ t !

5
i«

\l2~ t !

d f~ t !

dt
$Ŝx8 sin@2F~ t !#1Ŝy8 cos@2F~ t !#%.

~28!

Substituting Eqs.~26!–~28! into Eq. ~25!, we get

duc̆~ t !&
dt

52
i

\
ĤZuc̆~ t !&1

2ih

\
Ẑ

f ~ t !

l~ t !
Ŝz8uc̆~ t !&

1
2ih

\
Ẑ

«

l~ t !
$Ŝx8 cos@2F~ t !#

2Ŝy8 sin@2F~ t !#%uc̆~ t !&

1 i
«

\l2~ t !

d f~ t !

dt
$Ŝx8 sin@2F~ t !#

1Ŝy8 cos@2F~ t !#%uc̆~ t !&. ~29!

Note that this equation is still exact—it is equivalent
the original Schro¨dinger equation~11!. However, we can see
that if u f (t)u,« are large, thenF(t) will be a rapidly growing
function, and the last two terms of Eq.~29! will oscillate
very rapidly compared to the first two terms. Over a sh
period relative to the response time of the cantilever th
will essentially average away to nothing. In this limit, ther
fore, we can reasonably make a rotating-wave approxim
tion, to get the approximate evolution equation

duc̆~ t !&
dt

'2
i

\
$ĤZ22h@ f ~ t !/l~ t !#ẐŜz8%uc̆~ t !&. ~30!

This is equivalent to making an exact adiabatic approxim
tion, as described in Sec. II. We can see how this appro
mation compares to the complete Hamiltonian for a reas
able set of parameter values in Fig. 2. This set of parame
was chosen to match those of Bermanet al. @9#—see Sec.
VII for further details on the simulation. A compariso
shows that our results match their unitary simulations to
good precision. If the initial state is a Gaussian wave pac
it remains very close to a Gaussian at later times, just a
Ref. @9#; indeed, under the approximate Hamiltonian t
state remains an exact Gaussian at all times. For the dura
of our numerical simulations, the wave packets of the f
and approximate equations remained virtually indistingui
able.
1-4
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We should point out, however, that while the paramet
of the cantilever and driving force are plausible for near-te
experiments, the initial condition shown is atypical. Gen
ally, thermal noise will cause the cantilever to begin with
rather higher amplitude than that shown. In this case, it w
take longer for the phase difference between the two s
states to become fully evident. This might be importan
spin-relaxation effects are taken into account.

For the rest of this paper we will be using the rotatin
wave approximation and representing states in the rota
frame. For simplicity, we henceforth omit the accent fro
the stateuc̆&.

In this rotating-wave approximation, if the spin begins
an instantaneous eigenstate ofĤS(t), it will remain in an
instantaneous eigenstate at all times. If it begins in a su
position of the two eigenstates, the spin and cantilever
grees of freedom will become entangled, with the two co
ponents of the wave function corresponding to the two s
directions remaining undisturbed for all times. Monitorin
the position of the cantilever then serves as a nondemoli
measurement of the spin.

Note that the corrections to the adiabatic approximat
include terms which can flip the spin. These terms must
main small for the system to be a true nondemolition m
surement. The result of the spin measurement manifests i
as ap phase shift in the oscillation of the cantilever. We c
see this in Fig. 3.

IV. THE THERMAL ENVIRONMENT

Unfortunately, in practice we cannot treat the cantilever
an isolated system. It is coupled at least weakly to the vib
tional modes of the bulk, and is therefore subject to dissi
tion and thermal noise. Since the cantilever can be treate
a single harmonic oscillator, we can model the effects of t
thermal bath by the well-known Caldeira-Leggett@14# mas-
ter equation in the high-temperature limit:

ṙ52
i

\
@ĤSZ~ t !,r#2

igm

\
@ Ẑ,$ p̂,r%#2

gm

2,2
†Ẑ,@ Ẑ,r#‡,

~31!

FIG. 2. Mean cantilever position̂Ẑ& vs t for the complete and
rotating-wave Hamiltonians.
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where the parameters are

gm5
G

2m
,

,5
\

2AmkT
, ~32!

m is the cantilever mass,T is the temperature,k is Boltz-
mann’s constant~or the equivalent for our system of units!,
andG is the strength of the coupling to the thermal bath. W
can interpretgm ~with units of inverse time! as the dissipa-
tion rate and, ~with units of length! as the thermal de Bro
glie wavelength.

A feature of this equation is that it does not necessa
preserve the positivity ofr on short-time scales~though at
long times it is well behaved! @15#. This arises because of th
approximations which are made in the derivation, which b
come invalid at very short times. While this may be phy
cally unimportant, it can be inconvenient; in particular, if w
wish to unravel the evolution into a stochastic Schro¨dinger
equation@16# ~as we will show in Sec. VI!, it is necessary to
start with a master equation in theLindblad form@17#

ṙ52
i

\
@Ĥ,r#1(

j
@2L̂ jrL̂ j

†2$L̂ j
†L̂ j ,r%# ~33!

FIG. 3. Mean cantilever position̂Ẑ& vs t for initial spin up and

down in theŜz8 direction.
1-5
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for some HermitianĤ and a set of generalLindblad opera-

tors $L̂ j%. The Caldeira-Leggett equation~31! is not of this
form, which is why it can violate the positivity ofr.

The exact quantum Brownian-motion master equat
was shown@15# not to have the Lindblad form, but rathe
requires time-dependent coefficients to ensure the posit
of the density matrix at short times. However, by keep
more terms from the high- or medium-temperature-limit e
pansion in a consistent way, Dio´si @18# showed that the
Caldeira-Leggett equation can be replaced by another ma
equation whichis of the Lindblad form, and which agree
with it except at very short times when the equation’s val
ity is questionable in any case. This is done by adding a t
to Eq. ~31! of the form2(gm,2/2\2)†p̂,@ p̂,r#‡. The proce-
dure is analogous to completing the square. If we choose
ansatz

L̂5AẐ1 iBp̂ ~34!

with real A,B, plug it into Eq. ~33!, and equate it to the
Caldeira-Leggett equation~31! plus the additional term, we
get

ṙ52~ i /\!@Ĥ,r#2A2
†Ẑ,@ Ẑ,r#‡2B2

†p̂,@ p̂,r#‡

1 iAB~22Ẑr p̂1Ẑp̂r1rẐp̂12p̂rẐ2 p̂Ẑr2r p̂Ẑ!

52~ i /\!@ĤSZ~ t !,r#2
gm

2,2
†Ẑ,@ Ẑ,r#‡2

gm,2

2\2
†p̂,@ p̂,r#‡

1
igm

\
~ p̂rẐ2Ẑp̂r2Ẑr p̂1r p̂Ẑ!, ~35!

which implies that

A5Agm/2,2,

B5Agm,2/2\2,

Ĥ5ĤSZ~ t !1~gm/2!~ Ẑp̂1 p̂Ẑ![ĤSZ8 ~ t !. ~36!

So the Lindblad operator for this equation is

L̂5Agm/2@~1/, !Ẑ1 i ~,/\!p̂#, ~37!

and the effective Hamiltonian, going to the rotating pictu
and making use of the approximation derived in Sec. III,

ĤSZ8 ~ t !5
1

2m
p̂21

mvm
2

2
Ẑ222h@ f ~ t !/l~ t !#ẐŜz8

1~gm/2!~ Ẑp̂1 p̂Ẑ!. ~38!

In order for the cantilever to be an effective measurem
device, the loss rate must be very low:vm@gm .

V. THE EFFECTS OF MONITORING

In order to serve as a measurement scheme, we must
some way ofmonitoring the motion of the cantilever. Be
03230
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cause of the microscopic scale of the motion, this is not
easily done. One approach is to use optical interferometr
measure the cantilever position.

As shown in Fig. 1, the cantilever forms one side of
optical microcavity and the cleaved end of the fiber form
the other side. As the cantilever moves, the resonant
quency of the cavity changes. Because the time scale of
cantilever’s motion is very long compared to the optical tim
scale, we can treat the effects of this in the adiabatic lim
The cavity mode is also subject to driving by an extern
laser, and has a very high loss rate. The full master equa
@19# for the cantilever-spin-cavity system in the interacti
picture is

ṙ52
i

\
@ĤSZ8 ~ t !,r#12L̂rL̂†2L̂†L̂r2rL̂†L̂2 i @E~ â†1â!

1â†â~D1kẐ!,r#1~gc/2!~2ârâ†2â†âr2râ†â!,

~39!

where ĤSZ8 (t) and L̂ are the Hamiltonian and the Lindbla
operator for the cantilever and spin given by Eqs.~37! and
~38!, E is the strength of the laser driving,D is the detuning
from the ‘‘neutral’’ cavity frequency,k is the coupling
strength of the cantilever to the cavity mode, andgc is the
loss rate of the cavity.

Suppose now that we perform a homodyne measurem
@20,21# on the light which escapes from the cavity. We wou
like to replace Eq.~39! with an equation for theconditional
evolutionof r, conditioned on the output photocurrentI c(t).
The conditional evolution equation for our system then b
comes@21,22# ~in Itô calculus form!

dr52
i

\
@ĤSZ8 ~ t !,r#dt1~2L̂rL̂†2L̂†L̂r2rL̂†L̂ !dt

2 i @E~ â†1â!1â†â~D1kẐ!,r#dt1~gc/2!~2ârâ†

2â†âr2râ†â!dt1Agced~ âr1râ†2^â1â†&r!dWt ,

~40!

where 0<ed<1 is the detector efficiency anddWt is a real
stochastic differential variable which obeys the statistics

M @dWt#50, M @dWtdWs#5d~ t2s!dsdt, ~41!

with M denoting an ensemble average. This noise is rela
to the output photocurrent@20–22#

I c~ t !5bFgced^â1â†& t1Agced

dWt

dt G , ~42!

whereb is a constant giving the device’s range of respon
We want to operate in the ‘‘bad cavity’’ limit wheregc

@vm . This means that the cavity mode will approach eq
librium on a time scale very short compared to that of t
cantilever’s motion, so that the cavity mode can be adiab
cally eliminated@19,21–22# from this equation, leaving an
equation in terms of the spin and cantilever position alon
1-6
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Let the detuning vanish,D→0, and the couplingk to the
cantilever be very small. If we initially neglect this couplin
altogether, we can solve for the steady state of the ca
mode in isolation from the cantilever:

2 i @E~ â†1â!,r#1~gc/2!~2ârâ†2â†âr2râ†â!50,

~ âr1râ†2^â1â†&r!50, ~43!

which implies thatr5ua0&^a0u, whereâua0&5a0ua0& is a
coherent state with

a052
2iE

gc
. ~44!

Now let us restore the couplingk between the cantileve
and the cavity mode. If this coupling is very small, then t
state of the cavity mode will remain very close to stateua0&.
In this case, it is very useful to switch to adisplaced basis
@19,21,22# for the cavity mode. We switch from the operato
â,â† to displaced operators

b̂[â2a0 ,

b̂†[â†2a0* , ~45!

anddisplaced number states

b̂†b̂un&5nun&. ~46!

Obviously,u0&5ua0& and u1&5â†ua0&2a0* ua0&.
We now make the ansatz of keeping the two lowest d

placed number statesu0,1& of the cavity mode and neglectin
the rest@19,21,22#. We then write the full density matrix fo
the spin-cantilever-cavity system as

r~ t !5r0~ t ! ^ u0&^0u1r1~ t ! ^ u1&^0u1r1
†~ t ! ^ u0&^1u

1r2~ t ! ^ u1&^1u, ~47!

wherer0,1,2 are operators which act on the Hilbert space
the cantilever and spin, andr0,2 are self-adjoint. The reduce
density matrix of the spin-cantilever system alone is obtai
by tracing out the cavity mode, yielding

rSZ~ t !5r0~ t !1r2~ t !. ~48!

If we substitute definitions~45! and ~47! into the stochastic
master equation~40! and collect terms, we get a set o
coupled equations in the operatorsr0,1,2:

dr05S 2
i

\
@ĤSZ8 ~ t !,r0#12L̂r0L̂†2L̂†L̂r02r0L̂†L̂ Ddt

2
4ikE2

gc
2 @ Ẑ,r0#dt1

2kE

gc
~ Ẑr11r1

†Ẑ!dt1gcr2dt

1Agced~r11r1
†2r0 Tr$r11r1

†%!dWt , ~49!
03230
ty

-

f

d

dr15S 2
i

\
@ĤSZ8 ~ t !,r1#12L̂r1L̂†2L̂†L̂r12r1L̂†L̂ Ddt

2 ikẐr1dt2
4ikE2

gc
2 @ Ẑ,r1#dt2

2kE

gc
~ Ẑr02r2Ẑ!dt

2~gc/2!r1dt1Agced~r22r1 Tr$r11r1
†%!dWt ,

~50!

dr25S 2
i

\
@ĤSZ8 ~ t !,r2#12L̂r2L̂†2L̂†L̂r22r2L̂†L̂ Ddt

2S ik1
4ikE2

gc
2 D @ Ẑ,r2#dt2

2kE

gc
~ Ẑr1

†1r1Ẑ!dt

2gcr2dt2Agcedr2 Tr$r11r1
†%dWt . ~51!

Both r1 andr2 contain damping terms, which imply tha
they will remain small at all times, providedkẐ is suffi-
ciently small compared togc . ~This also implies that our
ansatz is reasonable for sufficiently smallk.!

By making use of the above equations, we can find
evolution equation for the reduced density matrixrSZ:

drSZ~ t !5dr0~ t !1dr2~ t !

5S 2
i

\
@ĤSZ8 ~ t !,rSZ#12L̂rSZL̂

†2L̂†L̂rSZ

2rSZL̂
†L̂ Ddt2

4ikE2

gc
2 @ Ẑ,rSZ#dt

1
2kE

gc
@ Ẑ,r12r1

†#dt2 ik@ Ẑ,r2#dt

1Agced~r11r1
†2rSZTr$r11r1

†%!dWt .

~52!

If we keep only terms to second order inkẐ we can neglect
the r2 term. This leaves only the terms proportional tor1

6r1
† , which we need know only to leading order inkẐ.

Provided~as we have already assumed! that the cantilever
moves slowly compared to the time scale set bygc and that
kẐ can be treated as small, then to leading orderdr1 van-
ishes;r1 remains in an approximate equilibrium state. If w
make use of this assumption we can~again to leading order!
solve forr16r1

† :

r11r1
†'2

4kE

gc
2 $Ẑ,rSZ%,

r12r1
†'2

4kE

gc
2 @ Ẑ,rSZ#, ~53!

which when inserted into Eq.~52! gives us a closed evolu
tion equation forrSZ:
1-7
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drSZ~ t !5S 2
i

\
@ĤSZ8 ~ t !,rSZ#12L̂rSZL̂

†2L̂†L̂rSZ

2rSZL̂
†L̂ Ddt2

4ikE2

gc
2 @ Ẑ,rSZ#dt

2
8k2E2

gc
3

†Ẑ,@ Ẑ,rSZ#‡dt1Agced

4kE

gc
2

3~ ẐrSZ1rSZẐ22rSZTr$ẐrSZ%!dWt . ~54!

~Note that we have absorbed a factor of21 into dWt .)
Examining the terms in Eq.~54!, we see that by eliminat

ing the cavity mode we get another effective term in t
Hamiltonian and another Lindblad operator. We can the
fore write this stochastic master equation in the form

drSZ~ t !52
i

\
@Ĥeff~ t !,rSZ#dt1(

j 51

2

~2L̂ jrSZL̂ j
†2L̂ j

†L̂ jrSZ

2rSZL̂ j
†L̂ j !dt1A2ed@~ L̂22^L̂2&!rSZ

1rSZ~ L̂22^L̂2&!#dWt , ~55!

where we define

L̂15Agm/2@~1/, !Ẑ1 i ~,/\! p̂#,

L̂25A8k2E2/gc
3Ẑ,

Ĥeff~ t !5
1

2m
p̂21

mvm
2

2
Ẑ222h@ f ~ t !/l~ t !#ẐŜz81

4kE2

gc
2

Ẑ

1~gm/2!~ Ẑp̂1 p̂Ẑ!. ~56!

Note that the term 4kE2Ẑ/gc
2 is a constant force, which jus

displaces the equilibrium position of the cantilever. It can
eliminated simply by changing the origin ofẐ, and is in any
case small for reasonable values of the parameters. The
put from the homodyne measurement now corresponds
measurement of the cantilever position^Ẑ&:

I c~ t !5bS 2
8edkE

gc
^Ẑ&1Agced

dWt

dt D . ~57!

As we shall see in the following section, we can furth
unravel this stochastic master equation~55! into a stochastic
Schrödingerequation for pure states. This further unraveli
provides a considerable improvement in numerical e
ciency, though it does not represent an actual measurem
process.

VI. PURE STATE UNRAVELING

The stochastic master equation~55! represents the evolu
tion of the cantilever-spin system, conditioned on the pho
current measurement recordI c(t). If we averaged over al
possible measurement records, thedWt terms would average
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to zero, and we would be left with an ordinary determinis
master equation for the cantilever and spin. It is for th
reason that the stochastic master equation is therefore o
referred to as anunravelingof the average master equatio

For numerical purposes, it is often much easier to solve
equation for apure state vectorrather than a density matrix
@16,23#. It is therefore useful to unravel Eq.~55! still further
to an equation which preserves pure states. We do this
introducing two additional stochastic processes to acco
for the thermal noise and the inefficiency of the detector.

We introduce the new master equation

drSZ~ t !52
i

\
@Ĥeff~ t !,rSZ#dt1(

j 51

2

~2L̂ jrSZL̂ j
†2L̂ j

†L̂ jrSZ

2rSZL̂ j
†L̂ j !dt1A2@~ L̂12^L̂1&!rSZ

1rSZ~ L̂12^L̂1&!#dW1t1A2ed@~ L̂22^L̂2&!rSZ

1rSZ~ L̂22^L̂2&!#dW2t1A2~12ed!

3@~ L̂22^L̂2&!rSZ1rSZ~ L̂22^L̂2&!#dW3t , ~58!

where the Hamiltonian and the Lindblad operators are
same as in Eq.~56! and we now have three independe
noise processes represented by stochastic differential
ablesdW1t , dW2t , anddW3t which satisfy

M @dWjt #50, M @dWitdWjs#5d~ t2s!d i j dsdt. ~59!

If we take the mean of Eq.~58! over dW1t and dW3t , we
recover Eq.~55!. We can think of the additional stochast
processes as representing fictitious additional measurem
whose outcomes we average over to recover the state w
is conditioned on theactual measurement.

However, Eq.~58! has a great advantage over Eq.~55!. If
rSZ is initially a pure staterSZ5ucSZ&^cSZu, it will remain a
pure state at all times, the state, of course, depending on
stochastic processesW1 , W2, andW3. We can recover the
solution of Eq.~55! by averaging

rSZ~ t !5MW1 ,W3
@ ucSZ~ t !&^cSZ~ t !u#. ~60!

It would be useful to replace Eq.~58! with an explicit
evolution equation forucSZ& instead ofrSZ. This equation is
thequantum state diffusion equation with real noise@24,25#:

ducSZ&52
i

\
Ĥeff~ t !ucSZ&dt1(

j 51

2

~2^L̂ j
†&L̂ j2L̂ j

†L̂ j

2u^L̂ j&u2!ucSZ&dt1A2~ L̂12^L̂1&!ucSZ&dW1t

1A2ed~ L̂22^L̂2&!ucSZ&dW2t

1A2~12ed!~ L̂22^L̂2&!ucSZ&dW3t . ~61!

The nonlinearity of this equation arises to preserve the no
1-8
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VII. NUMERICAL SIMULATION

We have simulated this system using the C11 quantum
state diffusion library@26# to numerically solve both the uni
tary evolution with Hamiltonian~30! and the stochastic
equation~61!. All the figures in this paper were generate
using this software.

We chose our parameters based on those used by Be
et al. @9#. These values are~in arbitrary units!

\5vm5m51,

h50.3,

«5400.0,

gm5vm /Q51025,

kBT5105, ~62!

whereQ is the quality factor of the cantilever. The drivin
force f (t) takes the form

f ~ t !5H 260001300t if 0<t<20,

1000 sin~ t220! if t.20.
~63!

If we make contact with physical values for actual canti
vers used in experiments, we havevm'105 s21 and m
'10212 kg. The value ofkBT above then corresponds to
temperature of around 0.1 K, which is within the bounds
experimental feasibility, though rather lower than the te
peratures used in the current experiments~around 3 K! @11#.
These are the physical values assumed in plotting the var
figures. Sinceh5(gm/2)(]Bz /]Z)0, the value ofh corre-
sponds to a field gradient of about 1.53107 T/m, which is
higher than the current experiments by roughly two orders
magnitude@11#, but hopefully this too will improve with
time. The cantilever would undergo displacements of abo
nanometer.

Alternatively, rather than increasing the field gradient
could achieve similar numbers by lowering the spring co
stant of the cantilever, for instance, by shrinking the mass
the cantilever. Lowering the mass by a factor of 100 has
same relative effect onh as increasing the field gradient by
factor of 10.

We then might ask about realistic parameters for
monitoring. A typical cavity sizeL is about a micrometer
with a laser frequency ofvc'1.431015 s21. This cavity is
generally quite lossy; reasonable quality factors might be
the rangeQc;10–100. The parameterE is a function of the
laser power,E5APgc /\vc5AP/\Qc. For P;1 mW and
Qc;100 we haveE;1013 s21. The coupling between the
cantilever and the cavity is given by a geometric factork
5vc /L;1.431021 (m s)21. In arbitrary units, this gives
coefficients

8kE

gc
51.93103, ~64!
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4kE2

gc
2

573102,

A8k2E2

gc
3

50.07.

The first value is the multiplier in Eq.~57!; the second gives
the equilibrium displacement of the cantilever; the third
the coefficient of the Lindblad operatorL̂2.

One question we can now easily address is how quic
the state of the spin collapses onto eigenstates ofŜz8 . In Fig.

4 we plot^Ŝz8& for ten different trajectories. We see that in a
ten cases the spin converged to61/2 quite quickly, before
t50.8 ms.

If we compare this with the results of Fig. 3, we see th
the spin state collapses rather more quickly than the can
ver oscillations can respond. We only get a clear output s
nal when the two phases are well separated, which does
occur until nearlyt51.5 ms. Generically, the difficulty of
collapsing the spin state is much less than the difficulty
obtaining an unequivocal readout.

The curves depicted in Fig. 3 are idealized, without t
measurement noise which will always be present in the o
put current~42! or ~57!. In Fig. 5 we show what the actua
output would look like for the set of parameters we are d
cussing. Note that even with the noise, the two phases~rep-
resenting spin up and spin down! are clearly distinguishable
In the following section, we derive an expression for t
signal-to-noise ratio in more general situations.

VIII. SIGNAL-TO-NOISE RATIO

Since we have to detect the effect of a very weak force
the cantilever by the single spin, we need very high reso
tion for the cantilever position measurements and a g
control of the various noise sources in the MRFM device.
described in Sec. II, the small displacement of the cantile

FIG. 4. Expectation valuêŜz8& vs t for ten different trajectories,
showing the rapid localization of the spin for an initial superpo
tion state@ uv1(0)&1uv2(0)&]/A2. We have taken the conventio

that Ŝz8 has eigenvalues61/2.
1-9
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is measured by a fiber-optic interferometer as a phase sh
the interference fringes. We shall analyze the quantum
thermal noise in this homodyne measurement scheme.

The Hamiltonian for the combined system of the sp
cantilever, and cavity mode, excluding coupling to the en
ronments, in the spin-rotating frame is

Ĥ5ĤZ22h
f ~ t !

l~ t !
ẐŜz81\vcâ

†â1\E~ â†e2 iv0t1âeiv0t!

1\kâ†âẐ. ~65!

Here, vc is the optical frequency of the cavity mode,v0
;vc is the driving frequency of the external laser, and oth
terms and parameters have been described in Sec. V.
master equation approach in Sec. IV is valid in high-
medium-temperature case. Here, we analyze the noise in
Heisenberg picture, using the quantum Langevin equa
approach that is valid at any temperature@27#.

Using standard techniques@28,29#, the reservoir~environ-
mental! variables may be eliminated, in the interaction p

FIG. 5. Simulation of photocurrent output in arbitrary unit
including measurement noise, using the parameters of Sec.
with detector efficiencyed50.85. We have chosen the scaleb so
that the vertical scale matches that of Fig. 3, and also plotted

expectation valueŝẐ& without the noisydW/dt components.
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ture with respect to\v0â†â, to give the following quantum
Langevin equations describing the dynamics of the wh
system:

dẐ~ t !

dt
5

1

m
p̂~ t !, ~66!

dp̂~ t !

dt
52mvm

2 Ẑ~ t !2
G

m
p̂~ t !2\kâ†~ t !â~ t !1Ŵ~ t !

12h
f ~ t !

l~ t !
Ŝz8~ t !, ~67!

dâ~ t !

dt
52S ivc2 iv01

gc

2 D â~ t !2 ikẐ~ t !â~ t !2 iE

1Agcâin~ t !, ~68!

dŜz8~ t !

dt
50, ~69!

dŜx8~ t !

dt
52h

f ~ t !

l~ t !
Ẑ~ t !Ŝy8~ t !, ~70!

dŜy8~ t !

dt
522h

f ~ t !

l~ t !
Ẑ~ t !Ŝx8~ t !. ~71!

In the the equations, the usual optical input noise opera
âin(t) is associated with the vacuum fluctuations of the co
tinuum of electromagnetic modes outside the cavity and
correlation function is given by

^âin~ t !âin
† ~ t8!&5d~ t2t8!. ~72!

The random forceŴ(t) describes the thermal noise motio
~quantum Brownian motion! of the cantilever at temperatur
T. For the case of an Ohmic environment, the thermal r
dom force correlation is given by@27#

^Ŵ~ t !Ŵ~ t8!&5
\G

p
@Fr~ t2t8!1 iFi~ t2t8!#, ~73!

where

Fr~ t !5E
0

V

dv v cos~vt !cothS \v

2kBTD , ~74!

Fi~ t !5E
0

V

dv v sin~vt !, ~75!

with V the frequency cutoff of the reservoir spectrum. Wit
out the presence of the external driving force from the sp
the cantilever-cavity system can be characterized by a se
classical steady state with a new equilibrium position for
cantilever, displaced byZst52kuastu2/(mvm

2 ) with respect
to that with no external driving laser field, and the cav
mode in a coherent stateuast& with the amplitude given by

II,

e

1-10



t

v
e
, w

via
n

s

nc

la-

cted

nce

-

r on
les.
the
rth.
a-

ut

REALISTIC SIMULATIONS OF SINGLE-SPIN . . . PHYSICAL REVIEW A68, 032301 ~2003!
ast5
2 iE

gc/21 iD
, ~76!

whereD5vc2v02k2uastu2/(mvm
2 ) is the cavity mode de-

tuning. By adjusting eitherv0 or vc , the detuning can be se
to zeroD50. As a result,ast5a0522iE/gc . Linearizing
the quantum Langevin equations about the steady-state
ues and renaming withẐ(t),â(t) the operators describing th
quantum fluctuations around the classical steady state
obtain

dẐ~ t !

dt
5

1

m
p̂~ t !, ~77!

dp̂~ t !

dt
52mvm

2 Ẑ~ t !2
G

m
p̂~ t !2\k@a0â†~ t !1a0* â~ t !#

1Ŵ~ t !12h
f ~ t !

l~ t !
Ŝz8~ t !, ~78!

dâ~ t !

dt
52

gc

2
â~ t !2 ika0Ẑ~ t !1Agcâin~ t !, ~79!

dŜz8~ t !

dt
50, ~80!

dŜx8~ t !

dt
52h

f ~ t !

l~ t !
@Zst1Ẑ~ t !#Ŝy8~ t !, ~81!

dŜy8~ t !

dt
522h

f ~ t !

l~ t !
@Zst1Ẑ~ t !#Ŝx8~ t !. ~82!

In the bad cavity limit wheregc@vm ,(G/m),kẐ „i.e., set

@dâ(t)/dt#50 in Eq. ~79!…, the dynamics of the field
quadrature,â†(t)1â(t), adiabatically follows that of the
cantilever position:

â†~ t !1â~ t !52 i
4ka0

gc
Ẑ~ t !1

2

Agc

@ âin~ t !1âin
† ~ t !#.

~83!

Thus, monitoring this field quadrature of the cavity mode
a homodyne measurement corresponds to a measureme
the cantilever position and hence the state of the spin.

The usual input-output relation@28,29# gives

âout~ t !5Agcâ~ t !2âin~ t !. ~84!

To account for an inefficient photodetector, we model it a
perfect photodetector preceded by a beam splitter@29#. The
effect of a photodetector of efficiencyed is equivalent to that
of passing photons through a beam splitter of transmitta
ed . Then the detected photon fieldd̂out, passing through the
beam splitter into the perfect detector, can be written as

d̂out~ t !5Aedâout~ t !1A~12ed!v̂ in~ t !, ~85!
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wherev̂ in represents a vacuum white noise with its corre
tion function given by

^v̂ in~ t !v̂ in
† ~ t8!&5d~ t2t8!. ~86!

We may define an operator corresponding to the dete
output photocurrent

Î out~ t !5bAgced@ d̂out~ t !1d̂out
† ~ t !#

5b$gced@ â~ t !1â†~ t !#2Agced@ âin~ t !1âin
† ~ t !#

1Agced~12ed! @ v̂ in~ t !1 v̂ in
† ~ t !#%. ~87!

Equation~87! is similar to Eq.~42! in that the two vacuum
noise terms together would give the same value of varia
~shot noise! of the output current as thedW term would. By
substituting Eq.~83! into Eq. ~87!, the resultant output cur
rent in the bad cavity limit is given by

Î out~ t !5bS 2
8kedE

gc
Ẑ~ t !1Agc ed@ âin~ t !1âin

† ~ t !#

1Agced~12ed!@ v̂ in~ t !1 v̂ in
† ~ t !# D . ~88!

This equation is also similar to Eq.~57!, obtained from the
master equation approach.

The Langevin equations forŜx8 and Ŝy8 effectively de-
couple from the other equations, since they do not appea
the right-hand side of the equations for the other variab
Because of this, they have no effect in our estimate of
signal-to-noise ratio, and we shall drop them hencefo
Taking a Fourier transform of the linearized Langevin equ
tions, we find, from Eq.~87!, the Fourier component of the
output current as

Î out~v!5bAgced~12ed!@ v̂ in~v!1 v̂ in
† ~v!#

1
bedAgc

~ iv2gc/2! H 2S iv1
gc

2 D @ âin~v!1âin
† ~v!#

1
2ika0Agc

m~vm
2 2v22 iGv/m!

F \ka0Agc

~ iv2gc/2!

3@ âin
† ~v!2âin~v!#1Ŵ~v!1G~v!Ŝz8G J , ~89!

where G(v) is the Fourier transform of G(t)
52h f (t)/l(t). The Fourier component of the mean outp
current signal is then given by

u^ Î out~v!&u5bedgcS 2kua0u
m D uG~v!u

uD~v!u ^Ŝz8&, ~90!

where
1-11
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D~v!5S iv2
gc

2 D S vm
2 2v22 iv

G

mD . ~91!

The output current noise power-density spectrum is
fined as

Sout~v!5H 1

2 E dt eivt^ Î out~ t ! Î out~ t1t!

1 Î out~ t1t! Î out~ t !&G(t)50J
t

5
1

4p H E dv8e2 i (v1v8)t^ Î out~v8! Î out~v!

1 Î at~v! Î out~v8!&G(v)50J
t

, ~92!

where the subscriptG(t)50 means evaluation in the ab
sence of the external driving force from the spin and$•••% t
denotes the time average overt. To calculate this noise spec
trum, the Fourier transform of the noise correlation functio
~72!–~75! and ~86! is needed and given by

^âin~v!âin
† ~v8!&52pd~v1v8!, ~93!

^Ŵ~v!Ŵ~v8!&52p\GvF11cothS \v

2kBTD Gd~v1v8!,

~94!

^v̂ in~v!v̂ in
† ~v8!&52pd~v1v8!, ~95!

where in obtaining Eq.~94! the infinite frequency cutoff limit
of the Ohmic thermal reservoir spectrum,V→`, has been
assumed. After some calculations, one can then obtain
output noise spectrum as

Sout~v!5b2ed
2gcH 1

ed
14S \k2gcua0u2

m D 2

3
1

@~gc/2!21v2#uD~v!u2

14S k2gcua0u2G

m2 D \v

uD~v!u2
cothS \v

2kBTD J .

~96!

The first term in Eq.~96!, independent of frequency, is th
contribution from the shot noise of the photons. It is gen
ally small compared to the other terms at the cantilever
quency for realistic parameters; however, at very low det
tor efficiencies it will dominate. The next term is the bac
action noise on the position of the cantilever by the radiat
~photons!. This back action is due to the random way
which photons bounce off the cantilever. The final term is
thermal noise, due to the thermal Brownian-motion fluctu
tion of the cantilever. Equation~96! is valid at all tempera-
tures. The assumptions made in its derivation are the lin
03230
-

s

he

-
-

c-

n

e
-

r-

ization around the semiclassical steady state and the infi
frequency cutoffV→`. The high-~or medium! temperature
limit \vm!kBT can be obtained by approximating

\v cothS \v

2kBTD'2kBT1
\2v2

6kBT
. ~97!

We plot these three contributions to the noise in Fig. 6 for
simulation parameters given in Sec. VII. We see that at
oscillator resonancevm , thermal noise dominates.

Let us define the signal-to-noise ratio per root Hertz a

R~v!5
u^ Î out~v!&u

ASout~v!
. ~98!

We are interested in evaluatingR(v) at frequency equal to
the cantilever vibration frequencyv5vm . Note that

1

uD~vm!u
5

1

@~gc/2!21vm
2 #1/2S Q

vm
2 D , ~99!

where the quality factorQ5mvm /G. As a result, the mean
output current signal~90! at v5vm is enhanced by a facto
of Qgc /@(gc/2)21vm

2 #1/2 as compared with thev50 case.
However, a similar enhancement occurs in the back-ac
noise and the thermal noise terms. In other words, driv
the cantilever atv5vm amplifies not only its vibration am-
plitudes due to the driving force, but also the noise amplitu
due to the back-action radiation pressure and the ther
Brownian motion~see Fig. 6!. We find R(v5vm) can be
written as

R~vm!5
uG~vm!u^Ŝz8&

AN~vm!
, ~100!

where

FIG. 6. We plot the various terms ofSout(v) vs v, using the
parameters of Sec. VII. The detector efficiency ised50.85, as in
Fig. 5. We have chosen the proportionality constantb so that
gcb

2ed
251, and plotted the frequency in arbitrary units wherevm

51. Note that atv5vm51 the thermal noise dominates for ou
parameters. However, the strength of the shot noise varies rel
to the other noises by 1/ed , so that at very low detector efficiencie
shot noise will dominate.
1-12
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N~vm!5
@~gc/2!21vm

2 #

4k2edgcua0u2
S mvm

2

Q D 2

1
\2k2gcua0u2

@~gc /2!21vm
2 #

1G\vm cothS \vm

2kBTD . ~101!

We may set^Ŝz8&56(1/2) to estimate the signal-to-nois
ratio per root hertz, corresponding respectively to the spin
the two different states in the rotating frame.

Because the driving forcef (t) is periodic,G(v) is equal
to a sum ofd functions atv5vm ,3vm ,5vm , . . . . Averag-
ing over a small interval aboutvm , we can integrate over th
d function to get a value~for our simulation parameters! of
R(vm)'220 s21/2. Thus, given a bandwidth of about 1 H
this should be easily detectable by our measurement sch
As mentioned in Sec. VII, we have assumed a magnetic-fi
gradient roughly two orders of magnitude greater than c
rent experiments and a much lower temperature. A sin
spin, therefore, would be below the edge of detectability
current experimental techniques. A steady improvemen
the field strength, temperature, and spring constant of th
experiments, however, should soon make single-spin m
surement possible.

If the dominant noise source in MRFM arises from the
mal Brownian motion of the cantilever, we can estimate
minimum detectable force~when the signal-to-noise ratio i
1! by keeping only the last term of Eq.~101!. In this case,
with a measurement bandwithDn, we obtain from Eqs.
~100!, ~101!, and~97! the usual expression of the minimu
detectable force at the high-temperature limit (\vm!kBT)

Fmin5AN~vm!Dn5A2kkBTDn

Qvm
, ~102!
,
A

v-

C
nt

. B

.

d

.I
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wherek5mvm
2 is the spring constant of the cantilever. W

see, then, that improvement can come either from raising
force ~by increasing the field gradient!, lowering the tem-
perature, or lowering the spring constant.

IX. CONCLUSIONS

We have derived an approximate description of sing
spin measurement by magnetic resonance force microsc
including both thermal noise and measurement back act
and used it to produce numerical simulations of a single-s
measurement. These simulations use the quantum trajec
method for open quantum systems. The parameters we
sumed for this simulation were somewhat optimistic; b
given the steady improvement in experimental technique,
believe that measurements of this type will be possible in
near future.

Single-spin measurements would be very useful in
construction of solid-state quantum computers, in which
spin of an electron represents a single qubit of informati
Given the great interest in solid-state implementations a
possibly scalable realization of quantum computers, find
practical ways to measure single spins would be very use
The results of our simulations suggest that magnetic re
nance force microscopy is a very promising approach to
difficult problem.
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