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Fast nonadiabatic two-qubit gates for the Kane quantum computer
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In this paper, we apply the canonical decomposition of two-qubit unitaries to find pulse schemes to control
the proposed Kane quantum computer. We explicitly find pulse sequences for the controlled-NOT, swap, square
root of swap, and controlledZ rotations. We analyze the speed and fidelity of these gates, both of which
compare favorably to existing schemes. The pulse sequences presented in this paper are theoretically faster,
with higher fidelity, and simpler. Any two-qubit gate may be easily found and implemented using similar pulse
sequences. Numerical simulation is used to verify the accuracy of each pulse scheme.
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I. INTRODUCTION

The advent of quantum algorithms@1,2# that can outper-
form the best known classical algorithms has inspired m
different proposals for a practical quantum computer@3–9#.
One of the most promising proposals, was presented by K
@9#. In this proposal, a solid-state quantum computer ba
on the nuclear spins of31P atoms was suggested. Althoug
initially difficult to fabricate, this scheme has several adva
tages over rival schemes@3–8#. These include the compara
tively long decoherence times of the31P nuclear and electron
spins@10–17#, the similarity to existing Si fabrication tech
nology, and the ability to scale.

There have been two main proposals for pulse seque
to implement aCNOT ~controlled-NOT! gate on the Kane
quantum computer. In the initial proposal@9#, an adiabatic
CNOT gate was suggested. Since that time the details of
gate have been investigated and optimized@18–21#. This
adiabatic scheme takes a total time of'26 ms and has a
systematic error of'531025 @19#. As good as these result
are, nonadiabatic gates have the potential to be faster
higher fidelity and allow advanced techniques such as c
posite rotations and modified rf pulses@22,23#.

Wellard et al. @24# proposed a nonadiabatic pulse sche
for the CNOT and swap gates. They present aCNOT gate that
takes a total time of'80 ms with an error@as defined later in
Eq. ~91!# of '431024. Although this gate is nonadiabatic
it is slower than its adiabatic counterpart. For the nonad
batic swap gate, a total time was calculated of 192ms.

One of the most useful tools in considering two-qubit u
tary interactions is the canonical decomposition@25–27#.
This decomposition expresses any two-qubit gate as a p
uct of single-qubit rotations and a simple interaction conte
The interaction content can be expressed using just t
parameters. In the limit that single-qubit rotations take n
ligible time ~in comparison to the speed of interaction!, this
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decomposition can be used to find optimal schemes@26,27#,
and of particular inspiration to this paper is an almost op
mal systematic method to construct theCNOT gate@28#.

It is not possible to apply those optimal schemes@26,27#
directly to the Kane quantum computing architecture. Th
assume single-qubit gates take negligible time in compari
with two-qubit interactions, whereas on the Kane archit
ture, they do not. Second, in the proposal for the Kane co
puter, adjacent nuclei are coupled via the exchange and
perfine interactions through the electrons, rather th
directly, and so we have a four-‘‘qubit’’ system~two elec-
trons and two nuclei! rather than a two-qubit system. Al
though we cannot applyoptimal schemes directly, in this
paper we use the canonical decomposition to simplify tw
qubit gate design.

Apart from being simple to design and understand, ga
described in this paper have many desirable features. S
features of these gates are the following.

~1! They are simpler, with higher fidelity, and faster tha
existing proposals.

~2! They do not require sophisticated pulse shapes, s
as are envisioned in the adiabatic scheme, to implement

~3! Any two-qubit gate can be implemented directly usi
similar schemes. This allows us to implement gates dire
rather than as a series ofCNOT gates and single-qubit rota
tions.

This paper is organized as follows. Section II gives
overview of the Kane quantum computer architecture a
single-qubit rotations. Section III describes the canonical
composition as it applies to the Kane quantum compu
Section IV describes pulse schemes for controlZ gates and
CNOT gates. Section V gives potential pulse schemes
swap and square root of swap gates. Finally, the conclus
Section VI, summarizes the findings of this paper.

II. THE KANE QUANTUM COMPUTER

A. The Kane architecture

A schematic diagram of the Kane quantum computer
chitecture is shown in Fig. 1. The short description giv
here follows Goan and Milburn@18#. This architecture con-
sists of 31P atoms doped in a purified28Si (I 50) host. Each
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P atom has nuclear spin ofI 5 1
2 . Electrodes placed directly

above each P atom are referred to asA gates and those be
tween atoms are referred to asJ-gates. An oxide barrier sepa
rates the electrodes from the P-doped Si.

Each P atom has five valence electrons. As a first appr
mation, four of these electrons form covalent bonds w
neighboring Si atoms, with the fifth forming a hydrogen-lik
S-orbital around each P1 ion. This electron is loosely boun
to the P donor and has a Bohr radius ofaB* '3 nm, allowing
an electron mediated interaction between neighboring nu

In this paper, nuclear-spin states will be represented
the statesu1& and u0&. Electronic spin states will be repre
sented byu↑& andu↓&. Where electronic states are omitted,
is assumed that they are polarized in theu↓& state.X, Y, and
Z are the Pauli matrices operating on electron and nuc
spins. That is,

X5sx , Y5sy , Z5sz . ~1!

Operations which may be performed on any system
governed by the Hamiltonian of the system. We now d
scribe the effective spin Hamiltonian for two adjacent qub
of the Kane quantum computer and give a short phys
motivation for each term which makes up the overall Ham
tonian

H5(
i 51

2

HBi
1HAi

1HJ1Haci
, ~2!

where the summation is over each donor atom in
systemi.

Under typical operating conditions, a constant magne
field B will be applied to the entire system, perpendicular
the surface. This contributes Zeeman energies to the Ha
tonian

HB52gnmnBZn1mBBZe . ~3!

A typical value for the Kane quantum computer ofB
52.0 T gives Zeeman energy for the electrons ofmBB
'0.116 meV and for the nucleusgnmnB'7.131025 meV.

The hyperfine interaction couples between nuclear
electronic spins. The contribution of the hyperfine interact
to the Hamiltonian is

HA5Asesn , ~4!

FIG. 1. The Kane quantum computer architecture.
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where strengthA of the hyperfine interaction is proportiona
to the value of the electron wave function evaluated at
nucleus

A5
8p

3
mBgnmnuc~0!u2. ~5!

A typical strength for the hyperfine interaction isA51.2
31024 meV. ChargedA gates placed directly above each
nucleus distort the shape of the electronic wave functi
thereby reducing the strength of the hyperfine coupling. T
nature of this effect is under numerical investigation@29#. In
this paper, we have assumed that it will be possible to v
the hyperfine coupling by up to'50%.

The exchange interaction couples adjacent electrons
contribution to the Hamiltonian is

HJ5Jse1
se2

, ~6!

wheree1 ande2 are two adjacent electrons. The magnitudeJ
of the exchange interaction depends on the overlap of a
cent electronic wave functions.J gates placed between nucl
distort both electronic wave functions to increase or decre
the magnitude of this interaction. A typical value for th
exchange energy is 4J50.124 meV, and in this paper, w
assume that it will be possible to vary the magnitude of
exchange interaction fromJ50 to J'0.043 meV.

A rotating magnetic field, of strengthBac rotating at a
frequency ofvac can be applied, perpendicular to the co
stant magnetic fieldB. The contribution of the rotating mag
netic field to the Hamiltonian is

Hac52gnmnBac@Xn cos~vact !1Yn sin~vact !#

1mBBac@Xe cos~vact !1Ye sin~vact !#, ~7!

where the strength of the rotating magnetic field is en
sioned to beBac'0.0025 T.

At an operating temperature ofT5100 mK, the electrons
are almost all polarized by the magnetic field. That is,

ne
↑

ne
↓ '2.14310212. ~8!

We assume that electrons are polarized in theu↓& state, and
use nuclear-spin states as our computational basis.

B. Z rotations

Single-qubit rotations are required to implement the tw
qubit gates described in this paper, as well as being esse
for universality. In fact, as we will see they contribute si
nificantly to the overall time and fidelity of each two-qub
gate. It is therefore important to consider the time required
implementZ, X, andY rotations.

In this section we describe how fastZ rotations may be
performed varying the voltage on theA gates only. AZ rota-
tion is described by the equation

Rz~u!5eiuZ/2. ~9!
1-2
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A Z gate~phase flip! may be implemented as a rotation. It
given up to a global phase by

Z52 iRz~p!. ~10!

Under the influence of a constant magnetic fieldB to sec-
ond order inA @18#, each nuclei will undergo Larmor prece
sion around theZ axis, at frequency of

\v l52gnmnB12A1
2A2

mBB1gnmnB
. ~11!

Z rotations may be performed by variation of the hyperfi
interaction fromA to Az giving a difference in rotation fre-
quency of

\vz52~A2Az!1
2~A22Az

2!

mBB1gnmnB
. ~12!

Perturbing the hyperfine interaction for one of the ato
and allowing free evolution, will rotate this atom with re
spect to the rotation of the unperturbed atoms. The spee
single atomZ rotations depends on how much it is possib
to vary the strength of the hyperfine interactionA. For nu-
merical simulation we use the typical values shown
Table I.

Under these conditions, aZ gate may be performed on
single nuclear spin in approximately

tZ'0.021 ms. ~13!

These rotations occur in a rotating frame that preces
around theZ axis with a frequency equal to the Larmor fr
quency. We may have to allow a small time of free evoluti
until nuclei that are not affected by theZ rotation orient
themselves to their original phase. The time required for
operation is less than

tF<0.02 ms. ~14!

C. X and Y rotations

In this section, we show how techniques, similar to tho
used in NMR~nuclear magnetic resonance! @18,30,31#, may
be used to implementX andY rotations.X andY rotations are
described by the equations

Rx~u!5eiuX/2, ~15!

Ry~u!5eiuY/2. ~16!

TABLE I. Typical parameters for aZ rotation.

Description Term Value~meV!

Unperturbed hyperfine interaction A 0.121131023

Hyperfine interaction duringZ rotation Az 0.060631023
01232
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X andY rotations are performed by application of a rotati
magnetic fieldBac . The rotating magnetic field is resona
with the Larmor precession frequency given in Eq.~11!, that
is,

vac5v l . ~17!

In contrast to NMR, in the Kane proposal we have dire
control over the Larmor frequency of each individual
nucleus. By reducing the hyperfine coupling for the atom,
wish to target fromA to Ax , we may apply an oscillating
magnetic field that is only resonant with the Larmor fr
quency of only one of the atoms. This allows us to induce
X or Y rotation on an individual atom. To the first order, th
frequency of this rotation may be approximated by

\vx5gnmnBacS 11
Ax

gnmnBD . ~18!

The speed of anX rotation is directly proportional to the
strength of the rotating magnetic fieldBac . As the strength
of the rotating magnetic fieldBac increases, the fidelity of the
operation decreases. The reason is that in frequency s
the full width at half maximum of the transition excited b
the rotating magnetic field increases in proportion toBac .
That is, asBac increases, we begin to excite nonresona
transitions. The larger separation, in frequency space,
tween Larmor frequencies, the smaller this systematic er
Since the Larmor precession frequency depends on
much we are able to vary the hyperfine interactionA, it de-
termines how strong we are able to makeBac.

For the purpose of simulation, the typical values shown
Table II for the unperturbed hyperfine interaction strengthA,
the hyperfine interaction strength during theX rotation Ax ,
applied magnetic-field strengthB, and rotating magnetic-
field strengthBac were used.

Using these parameters, this gives the overall time to p
form anX gate on a single-qubit in approximately

tX'6.4 ms. ~19!

Any single-qubit gate may be expressed as a product oX,
Y andZ rotations. Ideally,X andY rotations should be mini-
mized because Z rotations may be performed much fa
thanX or Y rotations. For example, a Hadamard gate may
expressed as a product ofZ andX rotations:

H5RzS p

2 DRxS p

2 DRzS p

2 D . ~20!

TABLE II. Typical parameters for anX rotation.

Description Term Value

Unperturbed hyperfine interaction A 0.121131023 meV
Hyperfine interaction duringX rotation Ax 0.060631023 meV
Constant magnetic-field strength B 2.000 T
Rotating magnetic-field strength Bac 0.0025 T
1-3



e

e
w
i

he
le

gy

e

th

on

me
ng
re

ion
the

it

d

rs,

e
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Thus, from the above discussion, the Hadamard gate tak
time of approximately

tH'3.2 ms. ~21!

D. Nuclear-spin interaction

In this section, we show the results of second order p
turbation theory to describe the interaction between t
neighboring P atoms. This interaction between nuclei
coupled by electron interactions. We consider the case w
the hyperfine couplings between each nucleus and its e
tron are equal, that is,

A5A15A2 . ~22!

We allow coupling between electrons, that is,

J.0, ~23!

but restrict ourselves to be far from an electronic ener
level crossing

J!
mBB

2
. ~24!

Under these conditions electrons will remain in the polariz
u↓↓& ground state.

In this situation, analysis has been performed using
second-order perturbation theory@18#. To second order inA,
the energy levels are

Eu11&522mBB1J12gnmnB12A, ~25!

Eusn&522mBB1J2
2A2

mBB1gnmnB
, ~26!

Euan&522mBB1J2
2A2

mBB1gnmnB22J
, ~27!

Eu00&522mBB1J22gnmnB22A2
2A2

mBB1gnmnB22J

2
2A2

mBB1gnmnB
, ~28!

where the symmetricusn& and antisymmetricuan& energy
eigenstates are given by

usn&5
1

A2
~ u10&1u01&), ~29!

uan&5
1

A2
~ u10&2u01&). ~30!

Notice that the energies are symmetric around

E0522mBB1J2
A2

mBB1gnmnB22J
2

A2

mBB1gnmnB
.

~31!
01232
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Since we are free to choose our zero-point energy to beE0
~or equivalently ignore a global phase of a wave functi
uc&) we may rewrite the second-order approximation as

Eu↓↓&u11&5\vB , ~32!

Eu↓↓&usn&5\vS , ~33!

Eu↓↓&uan&52\vS , ~34!

Eu↓↓&u00&52\vB , ~35!

wherevB andvS are given by

\vB52A12gnmnB1
A2

mBB1gnmnB
1

A2

mBB1gnmnB22J
,

~36!

\vS5
A2

mBB1gnmnB22J
2

A2

mBB1gnmnB
. ~37!

The reason for this representation of the energy will beco
clear in the following section. Typical values used duri
numerical simulation of the interaction between nuclei a
shown in Table III.

III. THE CANONICAL DECOMPOSITION

In this section, we describe the canonical decomposit
and describe how this decomposition may be applied to
Kane quantum computer.

A. Mathematical description of canonical decomposition

The canonical decomposition@25,27# decomposes any
two-qubit unitary operator into a product of four single-qub
unitaries and one entangling unitary:

U5~V1^ V2!Ucan~W1^ W2!, ~38!

whereV1 , V2 , W1, and W2 are single-qubit unitaries, an
Ucan is the two-qubit interaction. The symbol̂ represents
the tensor product of two matrices.

Ucan has a simple form involving only three paramete
ax , ay , andaz :

Ucan5eiaxX^ XeiayY^ YeiazZ^ Z. ~39!

This purely nonlocal term is known as theinteraction con-
tent of the gate. It is not difficult to show that each of th
terms in the interaction content,eiaxX^ X, eiayY^ Y, and
eiazZ^ Z, commute with each other.

TABLE III. Typical parameters during interaction.

Description Term Value~meV!

Hyperfine interaction during interaction AU 0.119731023

Exchange interaction during interaction JU 0.0423
1-4
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Physically each of the termseiaxX^ X, eiayY^ Y, and
eiazZ^ Z correspond to a type of controlled rotation. For e
ample, following Ref.@28#,

eiazZ^ Z5cosazI ^ I 1 i sinazZ^ Z

5cosaz~ u0&^0u1u1&^1u! ^ I

1 i sinaz~ u0&^0u2u1&^1u! ^ Z

5u0&^0u ^ eiazZ1u1&^1u ^ e2 iazZ

5~ I ^ eiazZ!~ u0&^0u ^ I 1u1&^1u ^ e2 i2azZ!.

~40!

This shows that up to a single-qubit rotation,eiazZ^ Z is
equivalent to a controlledZ rotation. This holds true for the
other two terms. If we denote the eigenstates ofX by

Xux1&51ux1&, ~41!

Xux2&52ux2&, ~42!

then a similar analysis shows that

~ I ^ e2 iaxX!eiaxX^ X5ux1&^x1u ^ I 1ux2&^x2u ^ e2 i2axX,

~43!

and that

~ I ^ e2 iayY!eiayY^ Y5uy1&^y1u ^ I 1uy2&^y2u ^ e2 i2ayY.

~44!

These operations are equivalent to controlled rotations in
X and Y directions, respectively. For the first case, if t
control qubit is in theux2& state anX rotation is applied to
the target qubit, and not applied if the control qubit is in t
ux1& state. Similarly forY.

Single-qubit rotations,V1 , V2 , W1 , W2, are possible on
the Kane quantum computing architecture, the remain
task is to specify the pulse sequence for the purely en
gling unitary Ucan . Fortunately, this is always possible, a
any interaction~with single-qubit rotations! between the two
nuclei is sufficient@32#. In fact, it is a relatively simple task
to use almost any interaction between qubits to generate
desired operation.

B. Calculation of the interaction content between nuclei

In this section, we will see how it is possible to apply t
canonical decomposition to the Kane quantum compu
This is important as this natural interaction of the system w
be manipulated by single-qubit unitaries to find the pu
scheme of any two-qubit gate. The canonical decomposi
provides a unique way of looking at this interaction.

The interaction that we will apply the canonical deco
position to is free evolution of the configuration described
Sec. II D, using the results cited there from the second-o
perturbation theory. After a particular time of free evolutio
our system will have evolved according to unitary dynami
01232
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which we may decompose using the canonical decomp
tion:

Usys5~V1
s

^ V2
s!Ucan

s ~W1
s

^ W2
s!, ~45!

where the superscripts indicates a physical operation prese
in our system.

We wish to find the interaction contentUcan
s of this free

evolution. Systematic methods for doing this are given
Refs. @25,26,33#. This is most easily done by noting an
interaction content,Ucan is diagonal in the so-called magi
basis, otherwise known as the Bell basis. This basis is

uF1&5
1

A2
~ u00&1u11&), ~46!

uF2&5
2 i

A2
~ u00&2u11&), ~47!

uF3&5
1

A2
~ u01&2u10&), ~48!

uF4&5
2 i

A2
~ u01&1u10&). ~49!

ax , ay , andaz are related to the eigenvalueseil1, eil2,
eil3, andeil4 of Ucan . That is,

l151ax2ay1az , ~50!

l252ax1ay1az , ~51!

l352ax2ay2az , ~52!

l451ax1ay1az . ~53!

It is possible to relate these eigenvalues to our syst
After a timet, each of the eigenstates of the system will ha
evolved according the Schro¨dinger equation, which we may
view as having performed an operationUsys(t) on the sys-
tem. As we showed in Sec. II D

Usysu11&5e1 iuBu11&, ~54!

Usysu00&5e2 iuBu00&, ~55!

Usysus&5e1 iuSus&, ~56!

Usysua&5e2 iuSua&, ~57!

where

uS5vSt, ~58!

uB5vBt. ~59!

Applying Eqs.~54!–~57! to Eqs.~46!–~49!, we obtain

UsysuF1&5cos~uB!uF1&2sin~uB!uF2&, ~60!

UsysuF2&5cos~uB!uF2&1sin~uB!uF1&, ~61!

UsysuF3&5e2 iuSuF3&, ~62!
1-5
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UsysuF4&5e1 iuSuF4&. ~63!

This shows that in the magic basis,Usys is given by

Usys5F cos~uB! sin~uB! 0 0

2sin~uB! cos~uB! 0 0

0 0 e2 iuS 0

0 0 0 eiuS
G . ~64!

It is possible to find the eigenvaluesl1 , l2 , l3, andl4.
We note that the eigenvalues ofUTU in the magic basis are
given by

l~UTU !5$e2il1,e2il2,e2il3,e2il4%. ~65!

Calculation of the eigenvalues ofUsys
T Usys is easy since

Usys
T Usys is already diagonal in this basis, with diagonal e

ements being$1,1,e22iuS,e2iuS%. Care must be exercised a
this point because it is not clear which branch should be u
when taking the argument. In our case, as long as 0<uS
<(p/2) @33#, then

l150, ~66!

l250, ~67!

l352uS , ~68!

l451uS . ~69!

Using Eqs.~50!–~53! we may solve for the coefficientsax ,
ay , andaz , giving

ax
s5

1

2
uS , ~70!

ay
s5

1

2
uS , ~71!

az
s50. ~72!

Single-qubit rotations,W1
s , W2

s , V1
s , V2

s , induced areZ
rotations.Z rotations are fast and may be canceled in co
paratively less time by single-qubitZ rotations in the oppo-
site direction:

~V1
s†

^ V2
s†!Usys~W1

s†
^ W2

s†!5Ucan
s . ~73!

For notational convenience, we will now label the interacti
content of the system by an angle rather than by its time.
time for this interaction may be calculated through E
~70!–~72!, ~58!, and~37!. Therefore, we write

Ucan
s ~f!5eifX^ X1 ifY^ Y, ~74!

where

f5
1

2
uS . ~75!
01232
d
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This analysis has been based on the second order pe
bation theory. As we approach the electronic energy-le
crossing, this approach is no longer valid. Close to this cro
ing numerical analysis shows the eigenvalues are no lon
symmetric which impliesaz

s becomes nonzero. Unfortu
nately, in this regime, we excite the system into high
energy electronic configurations.

Given any two-qubit gate, such as theCNOT gate, there are
many different possible choices of single-qubit rotations a
free evolution that will implement a desired gate.Z rotations
are faster single-qubit rotations thanX and Y rotations, and
therefore, it is desirable to minimizeX and Y rotations in
order to optimize the time required, for any given two-qu
gate.

IV. THE CNOT AND CONTROLLED Z GATES

A. Introduction

The CNOT gate is a particularly often cited example of
two-qubit gate.CNOT and single-qubit rotations are univers
for quantum computation@34#. Many implementations, in-
cluding the Kane proposal@9#, use this fact to demonstrat
that they can, in principle, perform any quantum algorith
It is a member of the so-called fault tolerant@35# set of gates,
which are universal for quantum computing, and are parti
larly important in error correction. In this section, we find
pulse scheme to implement theCNOT gate on the Kane quan
tum computer.

Controlled Z rotations, sometimes known as controlle
phase gates, are some of the most important operations
implementing quantum algorithms. In particular, one of t
simplest ways to implement quantum Fourier transform
tions uses multiple controlledZ rotations~see, for example,
Ref. @36#!. Single-qubit rotations and the controlledZ gate
are, like theCNOT gate, universal for quantum computatio
Controlled Z rotations may be used in the construction
controlledX andY rotations. In this section we find a puls
scheme to implement any controlledZ rotation on the Kane
quantum computer.

Because these two gates have similar interaction conte
we consider them together. We will first show how to co
struct a controlled-Z gate of any angle and use this gate d
rectly to construct aCNOT gate.

A controlledZ rotation of angleu is defined in the com-
putational basis by

ULZ~u!5F 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 eiu

G . ~76!

The canonical decomposition of the controlled Z rotation
an angleu has an interaction content consisting of

ax50, ~77!

ay50, ~78!
1-6
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az5
u

2
. ~79!

This interaction content may be found by using system
methods@25,26,33#. The controlled-Z gate also requires aZ
rotation as described by Eq.~40!.

CNOT is defined in the computational basis by the mat

UCNOT5F 1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

G . ~80!

The canonical decomposition ofCNOT has an interaction
content with angles of

ax50, ~81!

ay50, ~82!

az5
p

4
. ~83!

Since theCNOT and controlled-Z gates are both types o
controlled rotation similar to those described in Sec. III A,
is not a surprise that they have a similar interaction cont
In fact, control-Z gates~that is, a controlledZ rotation by an
angle of p) and CNOT gates have an identical interactio
content, and are therefore equivalent up to single-qubit r
tions. ACNOT gate may be constructed from a control-Z gate
conjugated byI ^ H.

B. The construction

Our first task in finding a suitable pulse scheme for
controlledZ rotation is to find a pulse scheme which impl
ments the interaction content@Eqs. ~77!–~79!# of the con-
trolled Z rotation. Techniques have direct analogs in NM
@30,31#.

The first technique@28# is to conjugate byI ^ X, I ^ Y, or
I ^ Z to change the sign of two of these parameters.
example,

~ I ^ Z!eiaxX^ X1 iayY^ Y1 iazZ^ Z~ I ^ Z!

5e2 iaxX^ X2 iayY^ Y1 iazZ^ Z. ~84!

This can be useful because it allows us to exactly can
every controlled rotation except one

~ I ^ Z!Ucan~ I ^ Z!Ucan5ei2azZ^ Z. ~85!

In our case, however, it turns out thataz
s50. In order to

reorder the parameters, a useful technique is to conjugat
Hadamardgates@28#. This is one of only several choices o
single-qubit rotations which reorder the parameters. In
case, the order of the parameters is
01232
ic

t.

a-

e

r

el

by

is

~H ^ H !eiaxX^ X1 iayY^ Y1 iazZ^ Z~H ^ H !

5eiazX^ X1 iayY^ Y1 iaxZ^ Z. ~86!

Combining these two techniques gives the following co
struction:

eiuZ^ Z5~Z^ I !~H ^ H !Ucan
s S u

2D ~H ^ H !~Z^ I !

3~H ^ H !Ucan
s S u

2D ~H ^ H !. ~87!

To find the final construction, several one-qubit optimiz
tions were made by combining adjacent single-qubit ro
tions and using the identities

HZH5X, ~88!

HH5I . ~89!

Operations may be performed in parallel. For examp
performing identicalX or Y rotations on separate nuclei is
natural operation of the system because magnetic fields
applied globally. Performing operations in parallel is fas
and also have higher fidelity than performing them one a
time.

The construction of the controlledZ rotation is shown in
Fig. 2. In this circuit, the single-qubit rotations specified
Eq. ~40! have been included. The period of interaction b
tween nuclei may be increased or decreased to produce
trolled rotations by any angleu as specified in Eqs.~87!,
~74!, ~58!, and~37!.

Our task of constructing aCNOT gate is now compara
tively simple. We note that aCNOT gate has the same inte
action term as the controlled-Z ~controlled phase! operation.
These gates are therefore equivalent up to local operatio

Conjugation byI ^ H will turn a controlled-Z operation
into a CNOT gate. Using some simple one qubit identities
simplify the rotations at the beginning and end of the pu
sequences, we arrive at the decomposition illustrated in
circuit diagram shown in Fig. 3.

FIG. 2. Circuit diagram for controlledZ pulse sequence.

FIG. 3. Circuit diagram for theCNOT pulse sequence.
1-7
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FIG. 4. Numerical simulation of theCNOT gate showing different initial conditions.
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C. Time and fidelity

Throughout the paper, we define fidelity as

F~ uc&,uc0&)5u^cuc0&u2, ~90!

with uc& being the actual state obtained from evolution a
uc0& being the state which is desired. We define the erro
terms of the fidelity as

E5max
uc&

@12F~ uc&,uc0&)], ~91!

where the maximization is performed over the output of
the computational basis statesuc&.

Numerical simulations were carried out by numerica
integrating Schro¨dinger’s equation for the Hamiltonian of th
system, Eq.~2!. The results of this numerical simulation fo
the pulse sequence of theCNOT gate are shown in Fig. 4
These graphs show each of the states and the transi
which are made. In these figures, it is possible to see
evolution of each of the four computational basis states.
control qubit is the second qubit and the target qubit is
first qubit.

According to the numerical results, a full controlledZ

gate takes a total time of 16.1ms and has an error of'4
31025. Similarly, we find theCNOT gate takes a total time
of 16.0ms. The time required for this gate can be grouped
shown in Table IV.

X andY rotations make up the majority of the time take
to implement the controlled-Z and CNOT gates. In theCNOT
01232
d
n

ll

ns
e
e
e

s

gate, only 3.2ms is spent implementing the entangling pa
of the gate, whereas 12.6ms is required to implement theX
andY rotations.

We can see via simulation that the systematic error in
CNOT gate is'431025. Some of these error will be due t
errors during simulation and breakdown of the second-or
approximation. A large part of the error, particularly if th
hyperfine interaction may not be varied very much, is due
X rotations where unintended nonresonant transitions are
cited along with the intended rotation.

V. THE SWAP AND SQUARE ROOT OF SWAP GATES

A. Introduction

One of the most important gates for the Kane quant
computer is envisioned to be the swap gate. This is beca
in the Kane proposal, only nearest-neighbor interactions
allowed. This gate swaps the quantum state of two-qub
By using the swap gate it is possible to swap qubits u
they are the nearest neighbors, interact with them, and
swap them back again. Having an efficient method to inter
qubits which are not adjacent to each other is therefore

TABLE IV. Time for the CNOT gate.

Description Timems

X rotations 12.6
Z rotations 0.2
Two qubit interaction 3.2
Total 16.0
1-8



on

r

, i
th
f

se
t
.
y

te

pu-

ap

lse

FAST NONADIABATIC TWO-QUBIT GATES FOR THE . . . PHYSICAL REVIEW A 68, 012321 ~2003!
portant, and the swap gate, with its high level of informati
transfer, is one possible method of achieving this.

The square root of swap gate has been suggested fo
quantum-dot-spin based quantum computer architecture@37#,
where it is a particularly natural operation. In our system
is not such a natural operation, but that does not mean
we cannot construct it. Like theCNOT gate, the square root o
swap ~together with single-qubit rotations! is universal for
quantum computation. In this section, we find a pulse
quence to implement both the swap and the square roo
swap gates on the Kane quantum computer architecture

The swap gate is defined in the computational basis b

Uswap5F 1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

G . ~92!

The canonical decomposition of the swap gate has an in
action content with angles of

ax5
p

4
, ~93!

FIG. 5. Circuit diagram for the swap gate pulse sequence.
01232
the
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at
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ay5
p

4
, ~94!

az5
p

4
. ~95!

The square root of the swap gate is defined in the com
tational basis by

USS53
1 0 0 0

0
1

2
~11 i !

1

2
~12 i ! 0

0
1

2
~12 i !

1

2
~11 i ! 0

0 0 0 1

4 . ~96!

The canonical decomposition of the square root of the sw
gate has an interaction term consisting of

ax52
p

8
, ~97!

FIG. 6. The circuit diagram for the square root of the swap pu
sequence.
FIG. 7. Numerical simulation of the swap gate.
1-9
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ay52
p

8
, ~98!

az52
p

8
. ~99!

Since the square root of swap and swap gates have e
tially the same interaction content, their constructions
very similar, and are therefore considered together here.

B. The construction

The easiest way to construct a swap gate is simply to
free evolution to obtain the anglesax anday which is natural
for our system. The only remaining term is theaz term,
which for our system will naturally be zero. We may obta
this term by applying a pulse sequence similar to the c
trolled Z rotation as described in Sec. IV. The resulting co
struction swap gate is shown in the diagram in Fig. 5.

The interaction content of the square root of swap gat
exactly half that of the swap gate, and it is negative. We
exactly the same technique used to obtain the swap g
only allowing the nuclei to interact for exactly half the tim
To make the terms negative, we conjugate byZ^ I . The
construction of the square root of swap gate obtained u
this method is shown in Fig. 6.

C. Speed and fidelity

The swap and square root of swap gates were simul
numerically. The resulting transitions for the swap gate
shown in Fig. 7. Similar results were obtained for the squ
root of swap gate, not shown here.

The swap gate takes a total time of 19.2ms, and has a
fidelity of '731025. The majority of time in this gate is
taken byX andY rotations, which are also the major sourc
of error.

This is substantially faster than an existing suggestion
the swap gate@19# of 192 ms. It is also faster than usin

TABLE V. Gate times and fidelities.

Gate Time (ms) Error

CNOT 16.0 431025

Swap 19.2 731025

Square root of swap 16.2 531025

ControlledZ 16.1 431025
ci
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three adiabaticCNOT gates, which would take'78 ms.
According to numerical simulation the square root

swap gate takes 16.8ms and has an error of approximate
531025. This is the first explicit proposal for the Kan
quantum computer for the square root of swap gate.

The square root of swap gate has been suggested in
context of quantum computation for quantum dots@37#. It is
universal for quantum computation and therefore can be u
to construct a CNOT gate. Unfortunately in this case, aCNOT

constructed from the square root of swap gate presented
would take approximately 40ms which is much longer than
the pulse sequence presented in this paper for theCNOT gate.

VI. CONCLUSION

We have shown how the canonical decomposition may
applied to the Kane quantum computer. We found the
nonical decomposition of a natural operation of the co
puter, that is, free evolution with hyperfine interactions eq
and the exchange interaction non-zero. We then used
interaction to form two-qubit gates which may be applied
the Kane quantum computer. These gates and their times
fidelities are shown in Table V.

The majority of the time required to implement each
these two-qubit gates is used to implement single-qubit ro
tions. Were we able to perform these rotations faster
more accurately then the gates presented here would
benefit. Another possible avenue of research is to investig
the effect of decoherence on the system.

To our knowledge, this is the fastest proposal for sw
square root of swap,CNOT, and controlled-Z operations on
the Kane quantum computer architecture. We have sho
how a representative set of two-qubit gates may be imp
mented on the Kane quantum computer. These methods
prove particularly powerful because they only involve ch
acterization by three parameters which may be determi
theoretically, as shown here, or through experiment. O
determined, these parameters may be used to construcany
two-qubit gate.
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