PHYSICAL REVIEW A 68, 012321 (2003
Fast nonadiabatic two-qubit gates for the Kane quantum computer

Charles D. Hilt* and Hsi-Sheng Godn
Centre for Quantum Computer Technology, and Department of Physics, The University of Queensland,
St. Lucia, Queensland 4072, Australia
2Centre for Quantum Computer Technology, University of New South Wales, Sydney, New South Wales 2052, Australia
(Received 29 January 2003; revised manuscript received 8 May 2003; published 22 Jyly 2003

In this paper, we apply the canonical decomposition of two-qubit unitaries to find pulse schemes to control
the proposed Kane quantum computer. We explicitly find pulse sequences for the comtadllessivap, square
root of swap, and controlled rotations. We analyze the speed and fidelity of these gates, both of which
compare favorably to existing schemes. The pulse sequences presented in this paper are theoretically faster,
with higher fidelity, and simpler. Any two-qubit gate may be easily found and implemented using similar pulse
sequences. Numerical simulation is used to verify the accuracy of each pulse scheme.
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[. INTRODUCTION decomposition can be used to find optimal schef2és27),
and of particular inspiration to this paper is an almost opti-
The advent of quantum algorithnii,2] that can outper- mal systematic method to construct theoT gate[28].
form the best known classical algorithms has inspired many It is not possible to apply those optimal schermi28,27]
different proposals for a practical quantum compui¢9]. directly to the Kane quantum computing architecture. They
One of the most promising proposals, was presented by Karessume single-qubit gates take negligible time in comparison
[9]. In this proposal, a solid-state quantum computer basewith two-qubit interactions, whereas on the Kane architec-
on the nuclear spins of'P atoms was suggested. Although ture, they do not. Second, in the proposal for the Kane com-
initially difficult to fabricate, this scheme has several advan-puter, adjacent nuclei are coupled via the exchange and hy-
tages over rival schem¢8—8]. These include the compara- perfine interactions through the electrons, rather than
tively long decoherence times of ti&P nuclear and electron directly, and so we have a four-“qubit” systefitwo elec-
spins[10-17], the similarity to existing Si fabrication tech- trons and two nuclgirather than a two-qubit system. Al-
nology, and the ability to scale. though we cannot applpptimal schemes directly, in this
There have been two main proposals for pulse sequencgsper we use the canonical decomposition to simplify two-
to implement acNoT (controlledNOT) gate on the Kane qubit gate design.
guantum computer. In the initial propodd], an adiabatic Apart from being simple to design and understand, gates
CNOT gate was suggested. Since that time the details of thigescribed in this paper have many desirable features. Some
gate have been investigated and optimié8-21. This  features of these gates are the following.
adiabatic scheme takes a total time 26 us and has a (1) They are simpler, with higher fidelity, and faster than
systematic error 0&=5x 10 ° [19]. As good as these results existing proposals.
are, nonadiabatic gates have the potential to be faster with (2) They do not require sophisticated pulse shapes, such
higher fidelity and allow advanced techniques such as comas are envisioned in the adiabatic scheme, to implement.
posite rotations and modified rf pulsg22,23. (3) Anytwo-qubit gate can be implemented directly using
Wellard et al.[24] proposed a nonadiabatic pulse schemesimilar schemes. This allows us to implement gates directly
for the cNOT and swap gates. They presenteoT gate that  rather than as a series oRNoOT gates and single-qubit rota-
takes a total time of 80 ws with an errofas defined later in  tions.
Eq. (91)] of ~4x 10 4. Although this gate is nonadiabatic, ~ This paper is organized as follows. Section Il gives an
it is slower than its adiabatic counterpart. For the nonadiaoverview of the Kane quantum computer architecture and
batic swap gate, a total time was calculated of 182 single-qubit rotations. Section Ill describes the canonical de-
One of the most useful tools in considering two-qubit uni-composition as it applies to the Kane quantum computer.
tary interactions is the canonical decompositi@5-27.  Section IV describes pulse schemes for confrglates and
This decomposition expresses any two-qubit gate as a pro@NOT gates. Section V gives potential pulse schemes for
uct of single-qubit rotations and a simple interaction contentswap and square root of swap gates. Finally, the conclusion,
The interaction content can be expressed using just thre®ection VI, summarizes the findings of this paper.
parameters. In the limit that single-qubit rotations take neg-
ligible time (in comparison to the speed of interactipthis Il. THE KANE QUANTUM COMPUTER

A. The Kane architecture

*Electronic address: hillcd@physics.ug.edu.au A schematic diagram of the Kane quantum computer ar-

"Mailing address: Center for Quantum Computer Technology, C/-chitecture is shown in Fig. 1. The short description given
Department of Physics, The University of Queensland, St. Luciahere follows Goan and Milburfil8]. This architecture con-
QLD 4072, Australia. Electronic address: goan@physics.uq.edu.asists of 3P atoms doped in a purifietfSi (I =0) host. Each
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where strengtt of the hyperfine interaction is proportional

A 7 ',4 g B to the value of the electron wave function evaluated at the
£ cine cine 3 Si nucleus
I TR, ,I % , I. P /
S A= |9(0)2 (5)
ve e ubstrate = 5 MBOnkn .
d d 3
p* p+
A typical strength for the hyperfine interactionAs=1.2

_ X 10~ * meV. Charged gates placed directly above each P
FIG. 1. The Kane quantum computer architecture. nucleus distort the shape of the electronic wave function,
thereby reducing the strength of the hyperfine coupling. The
P atom has nuclear spin bf ;. Electrodes placed directly nature of this effect is under numerical investigati@s]. In
above each P atom are referred toragates and those be- this paper, we have assumed that it will be possible to vary
tween atoms are referred to agates. An oxide barrier sepa- the hyperfine coupling by up te-50%.
rates the electrodes from the P-doped Si. The exchange interaction couples adjacent electrons. Its
Each P atom has five valence electrons. As a first approxicontribution to the Hamiltonian is
mation, four of these electrons form covalent bonds with
neighboring Si atoms, with the fifth forming a hydrogen-like H;=Joe o, (6)
S-orbital around each*Pion. This electron is loosely bound
to the P donor and has a Bohr radiusagf~3 nm, allowing  wheree; ande, are two adjacent electrons. The magnitdde
an electron mediated interaction between neighboring nucleof the exchange interaction depends on the overlap of adja-
In this paper, nuclear-spin states will be represented bgent electronic wave functionsgates placed between nuclei
the stateg1) and|0). Electronic spin states will be repre- distort both electronic wave functions to increase or decrease
sented by T) and||). Where electronic states are omitted, it the magnitude of this interaction. A typical value for the
is assumed that they are polarized in the state.X, Y, and  exchange energy isJ4=0.124 meV, and in this paper, we
Z are the Pauli matrices operating on electron and nucleaassume that it will be possible to vary the magnitude of the
spins. That is, exchange interaction frod=0 to J=~0.043 meV.
A rotating magnetic field, of strengtB,. rotating at a
X=oyx, Y=oy, Z=o0;. (D frequency ofw,. can be applied, perpendicular to the con-
stant magnetic fiel@®. The contribution of the rotating mag-
Operations which may be performed on any system ar@etic field to the Hamiltonian is
governed by the Hamiltonian of the system. We now de-

scribe the effective spin Hamiltonian for two adjacent qubits Hac= — OntnBad Xn COL wyct) + Y SiN(wyt) |
of the Kane quantum computer and give a short physical + uaB. X :

L ) : co t)+Yesi t)], 7
motivation for each term which makes up the overall Hamil- #eBad Xe COL wac) Yo SiN(wach)] @)
tonian where the strength of the rotating magnetic field is envi-

sioned to beB,.~0.0025 T.

2 At an operating temperature @f=100 mK, the electrons
H:_Zl Hg +Ha +Hy+tHgc, (2)  are almost all polarized by the magnetic field. That is,
1=
where the summation is over each donor atom in the T~2.14x 10 = (8)
systemi. Ng

Under typical operating conditions, a constant magnetic . .
field B will be applied to the entire system, perpendicular to /€ @ssume that electrons are polarized in|tfjestate, and
the surface. This contributes Zeeman energies to the HamilS€ nuclear-spin states as our computational basis.

tonian
B. Z rotations

Hg=—-9g,unBZy+ ugBZe. (3 Single-qubit rotations are required to implement the two-
qubit gates described in this paper, as well as being essential
for universality. In fact, as we will see they contribute sig-
nificantly to the overall time and fidelity of each two-qubit
gate. It is therefore important to consider the time required to

A typical value for the Kane quantum computer Bf
=2.0 T gives Zeeman energy for the electrons 0B
~0.116 meV and for the nucleug,u,B~7.1x10° meV. h :

The hyperfine interaction couples between nuclear aanpIementZ, X, andY rotations.

electronic spins. The contribution of the hyperfine interaction In this section we describe how fagtrotations may be
to the Hamiltonian is performed varying the voltage on thegates only. AZ rota-

tion is described by the equation

Ha=Aoceo,, (4) R,(0)=¢'?%2, 9)
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TABLE |. Typical parameters for & rotation. TABLE Il. Typical parameters for aiX rotation.
Description Term ValuémeV) Description Term Value
Unperturbed hyperfine interaction A 0.1211x10°3 Unperturbed hyperfine interaction A 0.1211x10 % meV
Hyperfine interaction during rotation A, 0.0606< 103 Hyperfine interaction during rotation A, 0.0606<10 3 meV

Constant magnetic-field strength B 2000T
Rotating magnetic-field strength Bac 0.0025 T

A z gate(phase flip may be implemented as a rotation. It is
given up to a global phase by

X andY rotations are performed by application of a rotating
Z=—iRy(m). (100  magnetic fieldB,.. The rotating magnetic field is resonant
with the Larmor precession frequency given in Etfl), that
Under the influence of a constant magnetic fiBltb sec- is,
ond order inA [18], each nuclei will undergo Larmor preces-
sion around the& axis, at frequency of Wae= O] - (17

2A2 In contrast to NMR, in the Kane proposal we have direct
m- (11 control over the Larmor frequency of each individual P
KB nken nucleus. By reducing the hyperfine coupling for the atom, we
. L . wish to target fromA to A,, we may apply an oscillating
Z rotations may be performed by variation of the hyperflnemagnetic field that is only resonant with the Larmor fre-

interaction fromA to A, giving a difference in rotation fre- quency of only one of the atoms. This allows us to induce an

i =20, unB+ 2A+

quency of X or Y rotation on an individual atom. To the first order, the
frequency of this rotation may be approximated b
. . 2(A2—A§) w q y y pp y
w,=2(A—A)+———.
#B+gnunB Ax )
ho,= B.. 1+ . 18
x— InMnDBac 9B ( )

Perturbing the hyperfine interaction for one of the atoms
and allowing free evolution, will rotate this atom with re-  The speed of aiX rotation is directly proportional to the
spect to the rotation of the unperturbed atoms. The speed atrength of the rotating magnetic fieRl,.. As the strength
single atomZ rotations depends on how much it is possibleof the rotating magnetic fielB . increases, the fidelity of the
to vary the strength of the hyperfine interactidnFor nu-  operation decreases. The reason is that in frequency space
merical simulation we use the typical values shown inthe full width at half maximum of the transition excited by

Table I. the rotating magnetic field increases in proportionBtg. .
Under these conditions, agate may be performed on a That is, asB,. increases, we begin to excite nonresonant
single nuclear spin in approximately transitions. The larger separation, in frequency space, be-

tween Larmor frequencies, the smaller this systematic error.
t;~0.021 us. (13 Since the Larmor precession frequency depends on how

much we are able to vary the hyperfine interactfgrit de-

These rotations occur in a rotating frame that precesse§rmines how strong we are able to makg.
around thez axis with a frequency equal to the Larmor fre-  For the purpose of simulation, the typical values shown in
quency. We may have to allow a small time of free evolutionTable Il for the unperturbed hyperfine interaction strength
until nuclei that are not affected by the rotation orient the hyperfine interaction strength during therotation A,
themselves to their original phase. The time required for thi¢Pplied magnetic-field strengtB, and rotating magnetic-

operation is less than field strengthB,. were used.
Using these parameters, this gives the overall time to per-
t-<0.02 us. (14) form an X gate on a single-qubit in approximately
ty~6.4 us. (19

C. X and Y rotations

In this section, we show how techniques, similar to those ANy single-qubit gate may be expressed as a produk of
used in NMR(nuclear magnetic resonandd.8,30,3], may Y andZrotations. IdeallyX andY rotations should be mini-

be used to implement andY rotations.X andY rotations are ~ Mized because Z rotations may be performed much faster
described by the equations thanX or Y rotations. For example, a Hadamard gate may be

_ expressed as a product Bfand X rotations:
Re(6)=¢€'"2, (15

a a
R,(0) =" (16 " RZ( 2 RX( E) "
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Thus, from the above discussion, the Hadamard gate takes a

time of approximately

ty~3.2 us. (21)

D. Nuclear-spin interaction

PHYSICAL REVIEW A68, 012321 (2003

TABLE lll. Typical parameters during interaction.

Description Term ValugmeV)
Hyperfine interaction during interaction Ay 0.1197 103
Exchange interaction during interaction J 0.0423

In this section, we show the results of second order per-
turbation theory to describe the interaction between twdSince we are free to choose our zero-point energy t&be
neighboring P atoms. This interaction between nuclei igor equivalently ignore a global phase of a wave function
coupled by electron interactions. We consider the case whefe/)) we may rewrite the second-order approximation as
the hyperfine couplings between each nucleus and its elec-

tron are equal, that is, B py1y=fiws, (32
We allow coupling between electrons, that is, El o= —hws, (34)
J>0, (23
E 00— — h(l)B, (35)
. . [11)]00)
but restrict ourselves to be far from an electronic energy-
level crossing wherewg and wg are given by
J< #eB 24 n 2A+2 B+ A + A
< WRr= ,
2 ° nken= B+ GoitnB 1B+ QB — 2
Under these conditions electrons will remain in the polarized (36)
|1 1) ground state. ) )
In this situation, analysis has been performed using the A A
ﬁws (37)

second-order perturbation thedd8]. To second order i,
the energy levels are

Ejiy=—2ugB+JI+20,u,B+2A, (25)
AZ

E‘Sn>:_2MBB+J_m' (26)
2A2

Eja)=—2ugB+J- (27)

#gB+gnu,B—2J"

2A?
mpB+gnusB—2J

Ejog= —2ugB+I—29,unB—2A~

2A? -
_MBB+gnMnB' ( )

where the symmetrigs,) and antisymmetrida,) energy
eigenstates are given by

59=5(110+]03), 9
1
|an) = E(|10>— 01)). (30
Notice that the energies are symmetric around
A? A?
B0 T AHeB T Bt gaaB- 20 BTGB

" upB+gnunB—2]  ugB+gauB’

The reason for this representation of the energy will become
clear in the following section. Typical values used during

numerical simulation of the interaction between nuclei are
shown in Table IlI.

IIl. THE CANONICAL DECOMPOSITION

In this section, we describe the canonical decomposition
and describe how this decomposition may be applied to the
Kane quantum computer.

A. Mathematical description of canonical decomposition

The canonical decompositiof25,27] decomposes any
two-qubit unitary operator into a product of four single-qubit
unitaries and one entangling unitary:

U=(V1®V2)Ucan(W1@W,), (38)
whereV,, V,, W;, andW, are single-qubit unitaries, and
Ucan is the two-qubit interaction. The symbal represents
the tensor product of two matrices.

Ucan has a simple form involving only three parameters,
ay, ay, anda;,:

Ucan: ei aXX®Xei ayY®Yei aZZ®Z. (39)

This purely nonlocal term is known as tl@teraction con-
tent of the gate. It is not difficult to show that each of the
terms _in the interaction conteng'®*®X, e'*Y®Y  and
e'e2®Z  commute with each other.
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e

Physically each of the termg'®*®X e'®Y®Y and  which we may decompose using the canonical decomposi-
ia,ZR7

correspond to a type of controlled rotation. For ex-tion:

ample, following Ref[28],

Ugys= (VIOV3)UZ (Wi WS), (45

' *Z®Z=cosa,l @ +i sina,Z®Z o . .
z z where the superscrigtindicates a physical operation present

=c0sa,(]0)(0[+|1)(1]|)®I in our system
o We wish to find the interaction conteht?,, of this free
+isinay(|0)(0] - |1)(1))®Z evolution. Systematic methods for doing this are given in
= |0)(0| @ e *Z+|1)(1| @ e i Refs. [25,26,33. This is most easily done by noting any
_ . interaction contentl.,, is diagonal in the so-called magic
=(1®e'?)(|0){(0]|®| +|1)(1|®e 297, basis, otherwise known as the Bell basis. This basis is
(40) 1
. ®,)=-—=(|00)+|11)), (46)
This shows that up to a single-qubit rotati@%z*® is [®w) \/§(| ) +111)
equivalent to a controlled rotation. This holds true for the
other two terms. If we denote the eigenstateXdfy
D)= f (100)~[11), (47)
X|x4)=+[x4), (41)
X|x_)=—[x-), (42) |Da)= [(|01>_|1O>) (48)
then a similar analysis shows that
. ‘ . —i
(I@e  aX) el uXOX=|x W(x, |@]+|x_)(x_|@e 12aX, |‘D4>=E(|01>+|10>)- (49)
(43 . o
_ay, ay, anda, are related to the eigenvalue$1, ez,
and that es, ande'™s of U.,,. That is,
(loe iy )eleyY®Y=ly Wy, |ol+|y_Wy_|oe 24y, A=tox—aytay, (50)
(44) )\2=—aX+ay+aZ, (51)
Ng=—ay—ay—a,, (52

These operations are equivalent to controlled rotations in the
X and Y directions, respectively. For the first case, if the Ng=+aytayta,. (53)
control qubit is in the/x_) state anX rotation is applied to

the target qubit, and not applied if the control qubit is in the It is possible to relate these eigenvalues to our system.
|x,) state. Similarly forY. After a timet, each of the eigenstates of the system will have

Single-qubit rotationsy;, V,, W;, W,, are possible on evolved according the Schiimger equation, which we may
the Kane quantum computing architecture, the remainingiew as having performed an operatibh, (t) on the sys-
task is to specify the pulse sequence for the purely entarfem. As we showed in Sec. Il D
gling unitary U.,,. Fortunately, this is always possible, as

— +igB
any interaction(with single-qubit rotationsbetween the two Usyd11)=e™%|11), (54)
nuclei is sufficien{32]. In fact, it is a relatively simple task Us,d00)=e" %] 00), (55)
to use almost any interaction between qubits to generate any _
desired operation. Usydsy=e"'’s]s), (56)
i
B. Calculation of the interaction content between nuclei USV4 a)=e s a), (57)
In this section, we will see how it is possible to apply the where
canonical decomposition to the Kane quantum computer. _
This is important as this natural interaction of the system will
be manipulated by single-qubit unitaries to find the pulse 0= wpgt. (59
scheme of any two-qubit gate. The canonical decomposition _ _
provides a unique way of looking at this interaction. Applying Egs.(54)—(57) to Egs.(46)—(49), we obtain
The interaction that we will apply the canonical decom- _ o
position to is free evolution of the configuration described in syd@1)=cog )| P1) —sin( )| D) (60)
Sec. II D, using the resullts cited there from the second-order Usyd @) =cog 6g)|P,) +sin( 6)|P4), (61)
perturbation theory. After a particular time of free evolution, ‘
our system will have evolved according to unitary dynamics, UsydP3) =€), (62

012321-5
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Usy4¢)4> = e+i95|(1)4>. (63)
This shows that in the magic basld,sis given by
cog6g) sin(6g) 0 0
—sin(fg) cog6p) 0 0
Usys= 0 0 e ls 0 (64)
0 0 0 €

It is possible to find the eigenvalugs, Ay, A3, and\,.

We note that the eigenvalues 0f U in the magic basis are

given by
)\(UTU):{e2i)\1,e2i}\2,eZi)\S’EZi)\4}_ (65)

Calculation of the eigenvalues cwlysusys is easy since

UIYSUsys is already diagonal in this basis, with diagonal el-
ements beind1,1e %%, e? %}, Care must be exercised at
this point because it is not clear which branch should be useﬁiN

when taking the argument. In our case, as long &s#§
<(m/2) [33], then

A,=0, (66)
\,=0, (67)
N3=—0bs, (68)
Na=+ 0s. (69)

Using Eqgs.(500—(53) we may solve for the coefficients,,
ay, anda,, giving

1

1
C()S/:E 03, (71)
s—0. (72)

Single-qubit rotations\V;, W5, V3, V3, induced areZ

rotations.Z rotations are fast and may be canceled in com
paratively less time by single-quhi rotations in the oppo-

site direction:

(V'@ VshUg d W' ewWsh =Us, . (73

For notational convenience, we will now label the interaction
content of the system by an angle rather than by its time. The
time for this interaction may be calculated through Egs.

(70—(72), (58), and(37). Therefore, we write
Uian(¢):ei¢x®x+i¢Y®Y, (74)

where

(79

PHYSICAL REVIEW A68, 012321 (2003

This analysis has been based on the second order pertur-
bation theory. As we approach the electronic energy-level
crossing, this approach is no longer valid. Close to this cross-
ing numerical analysis shows the eigenvalues are no longer
symmetric which impliesa; becomes nonzero. Unfortu-
nately, in this regime, we excite the system into higher-
energy electronic configurations.

Given any two-qubit gate, such as tbeoT gate, there are
many different possible choices of single-qubit rotations and
free evolution that will implement a desired gaferotations
are faster single-qubit rotations thahand Y rotations, and
therefore, it is desirable to minimiz¥ and Y rotations in
order to optimize the time required, for any given two-qubit
gate.

IV. THE cnoT AND CONTROLLED z GATES
A. Introduction

The cNOT gate is a particularly often cited example of a
0-qubit gatecNOT and single-qubit rotations are universal
for quantum computatiofi34]. Many implementations, in-
cluding the Kane propos4b], use this fact to demonstrate
that they can, in principle, perform any quantum algorithm.
It is a member of the so-called fault tolerd6] set of gates,
which are universal for quantum computing, and are particu-
larly important in error correction. In this section, we find a
pulse scheme to implement theioT gate on the Kane quan-
tum computer.

Controlled Z rotations, sometimes known as controlled
phase gates, are some of the most important operations for
implementing quantum algorithms. In particular, one of the
simplest ways to implement quantum Fourier transforma-
tions uses multiple controlled rotations(see, for example,
Ref. [36]). Single-qubit rotations and the controlledgate
are, like thecNoOT gate, universal for quantum computation.
Controlled Z rotations may be used in the construction of
controlledX andY rotations. In this section we find a pulse
scheme to implement any controll&drotation on the Kane
guantum computer.

Because these two gates have similar interaction contents,
we consider them together. We will first show how to con-
struct a controlled= gate of any angle and use this gate di-
rectly to construct &NOT gate.

A controlled Z rotation of angled is defined in the com-
putational basis by

Uaz(6)= (76)

o O O -
o O -, O
o B, O O

The canonical decomposition of the controlled Z rotation by
an angled has an interaction content consisting of
(77)

ay=0,

ay= 0, (78)
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0
=5 79 H H H —H X — H R (F

. _ _ _ U (%) U (%)
This interaction content may be found by using systematic
methods25,26,33. The controlledz gate also requiresa  —| H [ — H HR. ()}
rotation as described by E0).

CNOT is defined in the computational basis by the matrix

FIG. 2. Circuit diagram for controlled pulse sequence.

1 00O (HRH)e aXeXtiayYoYtiaZoZ g H)
U _ 01 0 O (80 — @l XOXFia) Yo Y+iaZoZ (86)
0 0 1 O Combining these two techniques gives the following con-
struction:
The canonical decomposition @NOT has an interaction p
content with angles of emZ@Z:(Z@I)(H®H)U§an(§)(H®H)(Z®I)
aXZOI (81) 9
><(H®H)U§an<§ (H®H). (87
a,=0, (82
To find the final construction, several one-qubit optimiza-
_m 83 tions were made by combining adjacent single-qubit rota-
RN (83 tions and using the identities

Since thecNoT and controlledZ gates are both types of HZH=X, (89)

controlled rotation similar to those described in Sec. Il A, it

is not a surprise that they have a similar interaction content. HH=I. (89)
In fact, controlz gates(that is, a controlled rotation by an . .
angle of ) and CNOT gates have an identical interaction OPerations may be performed in parallel. For example,

content, and are therefore equivalent up to single-qubit rotar_)erforming identicalX or Y rotations on separate nuclei is a

tions. ACNOT gate may be constructed from a contzagate natural operation of the system because magnetic fields are
conijgated by ®H applied globally. Performing operations in parallel is faster

and also have higher fidelity than performing them one at a
time.
B. The construction The construction of the controlled rotation is shown in
Our first task in finding a suitable pulse scheme for theFig. 2. In this circuit, the single-qubit rotations specified in
controlledZ rotation is to find a pulse scheme which imple- Eq. (40) have been included. The period of interaction be-
ments the interaction contefEgs. (77)—(79)] of the con-  tween nuclei may be increased or decreased to produce con-
trolled Z rotation. Techniques have direct analogs in NMRtrolled rotations by any anglé as specified in Eqs87),

[30,31). (74), (58), and(37).

The first techniqué28] is to conjugate by® X, I®Y, or Our task of constructing &NOT gate is now compara-
|®Z to change the sign of two of these parameters. Fotively simple. We note that @nOT gate has the same inter-
example, action term as the controlled{controlled phaseoperation.

_ _ _ These gates are therefore equivalent up to local operations.
(1@Z)e!mxX@XtlayYayriaZez(| g 7) Conjugation byl®H will turn a controlledz operation
o ImXOX-iayYoY+iazez (84) into aCNOT gate. Using some simple one qubit identities to

simplify the rotations at the beginning and end of the pulse

) ) sequences, we arrive at the decomposition illustrated in the
This can be useful because it allows us to exactly cancelj q it diagram shown in Fig. 3.

every controlled rotation except one

(I®Z)Ucan(|®Z)Ucan:ei2azz®z- (85) — H — X — H —Rz(_T”—

In our case, however, it turns out thaf=0. In order to U (%) U(%)
reorder the parameters, a useful technique is to conjugate b—Rz ()
Hadamardgateg28]. This is one of only several choices of 2
single-qubit rotations which reorder the parameters. In this
case, the order of the parameters is FIG. 3. Circuit diagram for thenoT pulse sequence.
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FIG. 4. Numerical simulation of thenoT gate showing different initial conditions.

C. Time and fidelity gate, only 3.2us is spent implementing the entangling part
Throughout the paper, we define fidelity as of the gate, whereas 126s is required to implement thé

andY rotations.
F( o), | o)) = (| o) |?, (90 We can see via simulation that the systematic error in the

CNOT gate is~4x 10 °. Some of these error will be due to
: . . . errors during simulation and breakdown of the second-order
rv'th |bl/l> betlgg ﬂ:et actl#:llhst_atg ol_)ta(ljnevt\d/ frgn;_ ev?:]utlon an_dapproximation. A large part of the error, particularly if the
t%) e'fntgh :Tds lfate which 1s desired. e define the error Irhyperfine interaction may not be varied very much, is due to
erms ot the fidelity as X rotations where unintended nonresonant transitions are ex-
cited along with the intended rotation.

E=ma{1-F(|¢).|¢o)], 91
) V. THE SWAP AND SQUARE ROOT OF SWAP GATES
T A. Introduction
where the maximization is performed over the output of all o £ th Ci \ant gates for the K )
the computational basis states). ne of the most important gates for the Kane quantum

Numerical simulations were carried out by numerically _computer Is envisioned to be the swap gate. '_I’his Is pecause,
integrating Schrdinger’s equation for the Hamiltonian of the |n”the dKa_rFﬁ_prop;JsaI, only tr;]earest-r:elghbto: |nt?r?ct|onsb§;re
system, Eq(2). The results of this numerical simulation for atiowed. 1his gate swaps the quantum state of two-qubrts.
the pulse sequence of tleNOT gate are shown in Fig. 4. By using the swap gate it is po_ssnble to swap qubits untl
These graphs show each of the states and the transitioffiey are the nearest nelghpors, Interact with them, a_nd then
which are made. In these figures, it is possible to see th wap the”.“ back again. Havmg an efficient mgthod to interact
evolution of each of the four computational basis states. Th@UPIts which are not adjacent to each other is therefore im-
control qubit is the second qubit and the target qubit is the

first qubit. TABLE IV. Time for the cNOT gate.
According to the numerical results, a full controllzd- Description Times

gate takes a total time of 16.4s and has an error cf4

X 107°. Similarly, we find thecNOT gate takes a total time X rotations 12.6

of 16.0 us. The time required for this gate can be grouped as Z rotations 0.2

shown in Table IV. Two qubit interaction 3.2
X andY rotations make up the majority of the time taken Total 16.0

to implement the controlled-and cNOT gates. In thecNOT

012321-8
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FIG. 6. The circuit diagram for the square root of the swap pulse

FIG. 5. Circuit diagram for the swap gate pulse sequence. Sequence.
portant, and the swap gate, with its high level of information T
transfer, is one possible method of achieving this. Xy~ (94)

The square root of swap gate has been suggested for the
guantum-dot-spin based quantum computer archite¢8Te
where it is a particularly natural operation. In our system, it _m

is not such a natural operation, but that does not mean that

we cannot construct it. Like thenoT gate, the square root of
The square root of the swap gate is defined in the compu-

swap (together with single-qubit rotationss universal for
quantum computation. In this section, we find a pulse setational basis by

guence to implement both the swap and the square root of
swap gates on the Kane quantum computer architecture. r1 0 0 o
The swap gate is defined in the computational basis by
1 1
1000 0 5(+i) (1-i) 0
0010 Uss=| 4 1 (96)
Uswar™| o 1 0 ol ©23 0 5(1-i) 5@+i) O

0 0 0 1 0 0 0 1

The canonical decomposition of the swap gate has an intefrhe canonical decomposition of the square root of the swap
gate has an interaction term consisting of

action content with angles of

(97

5 o 5 10
Time (us)

10
Time (us) (b)

Probability

10
Time (us)

FIG. 7. Numerical simulation of the swap gate.
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TABLE V. Gate times and fidelities.

PHYSICAL REVIEW A68, 012321 (2003

three adiabaticNOT gates, which would take-78 us.
According to numerical simulation the square root of

Gate Time {us) Error swap gate takes 16.8s and has an error of approximately
cNOT 16.0 4x10°5  5X 10"°. This is the first explicit proposal for the Kane
Swap 192 %10°5  quantum computer for the square root of swap gate.
Square root of swap 16.2 “510-5 The square root of swap gate has been suggested in the
Controlledz 16.1 4<10°5  context of quantum computation for quantum d@g]. It is
universal for quantum computation and therefore can be used
to construct a CNOT gate. Unfortunately in this casenaT
T constructed from the square root of swap gate presented here
Xy~ g (98)  would take approximately 4@s which is much longer than
the pulse sequence presented in this paper foctloa gate.
aa
=g (99 VI. CONCLUSION

tially the same interaction content, their constructions ar
very similar, and are therefore considered together here.

B. The construction

We have shown how the canonical decomposition may be

eéﬁiplied to the Kane quantum computer. We found the ca-
$onical decomposition of a natural operation of the com-

puter, that is, free evolution with hyperfine interactions equal
and the exchange interaction non-zero. We then used this
interaction to form two-qubit gates which may be applied to

The easiest way to construct a swap gate is simply to us#e Kane quantum computer. These gates and their times and

free evolution to obtain the angles anday which is natural

fidelities are shown in Table V.
The majority of the time required to implement each of

for our system. The only remaining term is tlg term,
which for our system will naturally be zero. We may obtain these two-qubit gates is used to implement single-qubit rota-
this term by applying a pulse sequence similar to the contions. Were we able to perform these rotations faster and
trolled Z rotation as described in Sec. IV. The resulting con-more accurately then the gates presented here would also
struction swap gate is shown in the diagram in Fig. 5. benefit. Another possible avenue of research is to investigate
The interaction content of the square root of swap gate i¢he effect of decoherence on the system.

exactly half that of the swap gate, and it is negative. We use To0 our knowledge, this is the fastest proposal for swap,
exactly the same technique used to obtain the swap gatgéduare root of swapeNoT, and controlledz operations on
only allowing the nuclei to interact for exactly half the time. the Kane quantum computer architecture. We have shown
To make the terms negative, we conjugate dyl. The how a representative set of two-qubit gates may be imple-
construction of the square root of swap gate obtained usingiented on the Kane quantum computer. These methods may
this method is shown in Fig. 6. prove particularly powerful because they only involve char-
acterization by three parameters which may be determined
theoretically, as shown here, or through experiment. Once

) determined, these parameters may be used to constnyct
The swap and square root of swap gates were simulategyo-qubit gate.

numerically. The resulting transitions for the swap gate are
shown in Fig. 7. Similar results were obtained for the square
root of swap gate, not shown here.

The swap gate takes a total time of 192, and has a
fidelity of ~7x107°. The majority of time in this gate is We would like to thank Gerard Milburn for support.
taken byX andY rotations, which are also the major sourcesC.D.H. would like to thank Mick Bremner, Jennifer Dodd,
of error. Henry Haselgrove, and Tobias Osborne for help and advice.

This is substantially faster than an existing suggestion foH.S.G. would like to acknowledge financial support from
the swap gatd19] of 192 us. It is also faster than using Hewlett-Packard.

C. Speed and fidelity
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