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Abstract
The Hall conductivity in the magnetic-field-induced spin-density-wave (FISDW) state of the quasi-one-

dimensional organic conductors (TMTSF)2X at a finite temperature is calculated. The temperature dependence
of the Hall conductivity is found to be the same as the temperature dependence of the Fröhlich current of a reg-
ular charge/spin-density wave. Predicted dependence σxy(T ) can be verified experimentally in the (TMTSF)2X
compounds if all components of the resistivity tensor are measured and the conductivity tensor is reconstructed.

Keywords: Many-body and quasiparticle theories; Transport measurements, conductivity, Hall effect, magneto-
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Organic metals of the (TMTSF)2X family, where
TMTSF is tetramethyltetraselenafulvalene and X rep-
resents an inorganic anion, are highly anisotropic,
quasi-one-dimensional crystals that consist of parallel
conducting chains. The overlap of the electron wave
functions and the electric conductivity are the highest
in the direction of the chains (the a direction) and are
much smaller in the b direction perpendicular to the
chains. In this paper, we neglect the coupling between
the chains in the third, c direction, which is weaker
than in the b direction, and study the properties of a
single layer (the a-b plane), modeling (TMTSF)2X as
a system of the uncoupled two-dimensional layers.

When a strong magnetic field is applied perpendic-
ular to the a-b plane, the magnetic-field-induced spin-
density-wave (FISDW) appears in the system (see Ref.
[1] for a review). In the FISDW phase, the Hall con-
ductivity per one layer, σxy, is quantized at zero tem-
perature as

σxy = 2Ne2/h, (1)

where e is the electron charge, h = 2πh̄ is the Planck
constant, and N is an integer that characterizes the
FISDW. However, at a finite temperature, because elec-
trons are thermally excited above the FISDW energy
gap, the Hall conductivity is not quantized. In this pa-
per, we calculate temperature dependence of the Hall
conductivity in the FISDW state.

To model (TMTSF)2X, let us consider a 2D system
that consists of many chains, parallel to the x axis and

equally spaced along the y-axis with the distance b.1)

The chains are coupled through the electron tunneling
of the amplitude tb. To calculate the Hall conductivity,
suppose that a magnetic field H is applied along the z
axis perpendicular to the (x, y) plane, and an electric
field Ey is applied perpendicular to the chains. The
electron Hamiltonian in the FISDW state is:2)

Ĥ = − h̄2

2m

∂2

∂x2
+2∆cos(Qxx)+2tb cos[kyb−G(x−vEy

t)], (2)

where m is the electron mass, Qx and ∆ are the wave
vector and the amplitude of the FISDW potential, ky

is the electron wave vector across the chains, t is the
time,

G = ebH/h̄c (3)

is the wave vector of the magnetic field,

vEy
= cEy/H (4)

is the drift velocity in the crossed electric and mag-
netic fields, and c is the velocity of light. Hamilto-
nian (2) is written in the mixed representation, where
an electron wave function depends on the coordinate
x along the chains and the momentum ky across the
chains. For simplicity, we set the FISDW wave vector
across the chains, Qy, to zero, and neglect the next-
nearest-neighbor hopping term 2t′b cos(2kyb) in Hamil-
tonian (2). The electric and magnetic fields are intro-

1)The x and y axes correspond to the a and b axes of (TMTSF)2X.
2)We pay no attention to the spin indices, because they are not

important for our purposes.
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duced in Hamiltonian (2) via the Peierls–Onsager sub-
stitution, ky → ky − eAy/ch̄, in the gauge

Ax = Az = 0, Ay = Hx− Eyct. (5)

It follows from Eq. (2) that, in the presence of the mag-
netic field, the hopping across the chains becomes a pe-
riodic potential along the chains with the wave vector
G (3) proportional to the magnetic field. We will refer
to this periodic potential as the “hopping potential”.
Due to the presence of the electric field Ey, the hop-
ping potential moves along the chains with the velocity
vEy

(4), whereas the FISDW potential is assumed to be
pinned and does not move.

Let us linearize the longitudinal dispersion in Hamil-
tonian (2) near the Fermi energy and focus on the elec-
trons whose momenta are close to the Fermi momenta
+kF and −kF. Let us count their momenta from +kF

and −kF and denote their wave functions as u and w.
In this representation, a complete electron wave func-
tion is a spinor (u,w), and the Hamiltonian is a 2 × 2
matrix, which can be expanded over the Pauli matrices
τ̂1, τ̂2, τ̂3, and the unity matrix 1̂ (which we will not
write explicitly in the following formulas). It is well
known [1, 2, 3] that the FISDW wave vector depends
on the magnetic field in the following manner:

Qx = 2kF −NG = 2kF −NebH/h̄c, (6)

where N is an integer that characterizes the FISDW.
Taking into account Eq. (6), Hamiltonian (2) can be
rewritten in the spinor representation as

Ĥ = −ih̄vFτ̂3
∂

∂x
+∆τ̂1e

iτ̂3NGx+2tb cos[kyb−G(x−vEy
t)], (7)

where vF = kF/m is the Fermi velocity. The last term
in Eq. (7) can be eliminated by chiral transformation
of the electron wave function:3)
(

u
w

)

→ exp

{

iτ̂3
2tb
h̄ωc

sin[kyb−G(x− vEy
t)]

} (

u
w

)

, (8)

where

h̄ωc = h̄vFG = ebHvF/c (9)

is the characteristic energy of the magnetic field (the
cyclotron frequency). In representation (8), Hamilto-
nian (7) becomes

Ĥ=−ih̄vFτ̂3
∂

∂x
+ ∆τ̂1 exp(iτ̂3NGx)

× exp

{

iτ̂3
4tb
h̄ωc

sin[kyb −G(x− vEy
t)]

}

. (10)

Expanding the periodic function in the last term of Eq.
(10) into the Fourier series, we get the following expres-
sion:

Ĥ=−ih̄vFτ̂3
∂

∂x
+ ∆τ̂1e

iτ̂3[N(kyb+GvEy t)]

×
∑

n

an+Ne
iτ̂3n[kyb−G(x−vEy t)], (11)

3)This kind of transformation was first introduced in Ref. [4] that
started development of the FISDW theory.

where the coefficients of the expansion, an, are the
Bessel functions: an = Jn(4tb/h̄ωc).

4) The last term in
Eq. (11) is the sum of many sinusoidal potentials whose
wave vectors are the integer multiples of the magnetic
wave vector G. Each of these periodic potentials mixes
the +kF and −kF electrons and opens an energy gap at
the electron wave vector kx shifted from ±kF by an in-
teger multiple of G/2. The distance in energy between
the gaps is equal to h̄ωc (9).

The term with n = 0 in the sum in Eq. (11) does
not depend on x and opens the gap right at the Fermi
level.5) When the temperature T is much lower than
the distance between the energy gaps h̄ωc:

T ≪ h̄ωc, (12)

only the gap at the Fermi level is important, whereas
the other gaps may be neglected. Condition (12) is al-
ways satisfied in the relevant temperature range 0 ≤
T ≤ Tc (where Tc is the FISDW transition tempera-
ture) in the weak coupling theory of the FISDW, where
Tc ≪ h̄ωc. Thus, let us omit all the terms in the sum
in Eq. (11), except the term with n = 0:

Ĥ = −ih̄vFτ̂3
∂

∂x
+ ∆eff τ̂1e

iτ̂3[N(kyb+GvEy t)], (13)

∆eff = aN∆. (14)

This is the so-called single-gap approximation [5]. It
was shown explicitly in Ref. [6] that omission of the
gaps located deeply below the Fermi energy does not
change the value of the Hall conductivity, at least at
zero temperature.

By the above sequence of manipulations, we have
combined the two periodic potentials in Eq. (2) into
the single effective potential (13) that opens a gap at
the Fermi level. It follows from Eq. (13) that the phase
ϕ of this effective potential changes in time:

ϕ̇ = −NGvEy
, (15)

which means that the effective potential moves along
the chains. Since, at zero temperature, all electrons are
confined under the energy gap opened by this potential,
the motion of the potential induces the Fröhlich current
[7] along the chains:

jx = − e

πb
ϕ̇. (16)

Substituting Eqs. (15), (3), and (4) into Eq. (16), we
find the quantum Hall effect (QHE) in agreement with
Eq. (1):

jx =
2Ne2

h
Ey. (17)

4)General expression (11) is valid even when the FISDW has a
nonzero transverse wave vector and the transverse dispersion law of
the electrons is more complicated, but the expression for the expan-
sion coefficients an would be different in that case.

5)Since, by introducing the ± electrons, we have already subtracted
the wave vectors ±kF, the actual wave vector that corresponds to this
term is 2kF.
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Figure 1: The reduction factor f of the Hall conduc-
tivity as a function of the ratio of the energy gap at the
Fermi level ∆eff to the temperature T , as given by Eq.
(20).

To avoid confusion, we wish to emphasize that here
the FISDW is assumed to be immobile, unlike in Ref.
[8] where the influence of the FISDW motion on the
QHE was studied. The effective potential (13) moves,
because it is a combination of the stationary FISDW
potential and the moving hopping potential (2).

Eq. (16) is a good starting point to discuss the
temperature dependence of the QHE. According to
the above consideration, the Hall conductivity is the
Fröhlich conductivity of the effective periodic potential
(13). Thus, the temperature dependence of the QHE
must be the same as the temperature dependence of
the Fröhlich conductivity. The latter issue was stud-
ied in the theory of a regular charge/spin density wave
(CDW/SDW) [9, 10]. At a finite temperature T , the
electric current carried by the CDW/SDW condensate
is reduced with respect to the zero-temperature value
(16) by a factor f(T ). The same factor reduces the
condensate Hall effect at a finite temperature:

σxy(T ) = f(T ) 2Ne2/h, (18)

f(T ) = 1 −
∫ ∞

−∞

dkx

h̄vF

(

∂E

∂kx

)2 [

−∂nF(E/kBT )

∂E

]

, (19)

where E =
√

(h̄vFkx)2 + ∆2
eff is the electron dispersion

law in the FISDW phase, kB is the Boltzmann constant,
and nF(ǫ) = (eǫ + 1)−1 is the Fermi distribution func-
tion. The last term in Eq. (19) reflects the fact that
normal quasiparticles, thermally excited above the en-
ergy gap, equilibrate with the immobile crystal lattice;
thus, only a fraction of all electrons is carried along
the chains by the moving periodic potential, which re-
duces the Hall/Fröhlich current. Derivation of Eq. (19)
is given in Appendix.

The function f (19) depends only on the ratio of
the energy gap at the Fermi level, ∆eff (14), and the

Figure 2: Hall conductivity in the FISDW state as
a function of the temperature T normalized to the
FISDW transition temperature Tc.

temperature T and can be written as [10, 11]

f

(

∆eff

kBT

)

=

∫ ∞

0

dζ tanh

(

∆eff

2kBT
cosh ζ

)

/ cosh2 ζ.(20)

The function f(∆eff/kBT ) is plotted in Fig. 1. It is
equal to 1 at zero temperature, where Eq. (18) gives
the QHE, gradually decreases with increasing T , and
vanishes when T ≫ ∆eff . Taking into account that
the FISDW order parameter ∆ itself depends on T and
vanishes at the FISDW transition temperature Tc, it is
clear that f(T ) and σxy(T ) vanish at T → Tc, where
σxy(T ) ∝ f(T ) ∝ ∆(T ) ∝

√
Tc − T . Assuming that the

temperature dependence ∆eff(T ) is given by the BCS
theory [5], we plot the temperature dependence of the
Hall conductivity, σxy(T ), in Fig. 2.

The function f(T ) (19) is qualitatively similar to
the function fs(T ) that describes the temperature re-
duction of the superconducting condensate density in
the London case. Both functions approach 1 at zero
temperature, but near Tc the superconducting function
behaves differently: fs(T ) ∝ ∆2(T ) ∝ Tc − T . As ex-
plained in Appendix, this is due to the difference be-
tween the static and dynamic limits of the response
function.

The QHE in the FISDW state at zero temperature
was derived theoretically in Refs. [2, 6, 12]. An at-
tempt to calculate the Hall conductivity in the FISDW
state at a finite temperature was made in Ref. [11],
but it failed to produce the QHE at zero temperature.
Various aspects of the QHE in (TMTSF)2X were re-
viewed in Ref. [13]. Temperature dependence of the
Hall resistance in (TMTSF)2X was measured in exper-
iments [14]. However, to compare the experimental re-
sults with our theory, it is necessary to convert the Hall
resistivity into the Hall conductivity, which requires ex-
perimental knowledge of all components of the resistiv-
ity tensor.

We conclude that, at zero temperature, a FISDW
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system exhibits the QHE (1) with the same integer
number N that characterizes the wave vector (6) of
the FISDW. As the temperature increases, the Hall
conductivity decreases, vanishing at the FISDW transi-
tion temperature Tc. The function f(T ) that describes
the reduction of the Hall effect with the temperature is
the same as the temperature reduction function of the
Fröhlich current of a regular charge/spin-density wave.

This work was partially supported by the NSF un-
der Grant DMR–9417451, by the Alfred P. Sloan Foun-
dation, and by the David and Lucile Packard Founda-
tion.

Appendix

We derived Eqs. (18) and (19) by calculating the single-
loop Feynman diagram that represents the electromag-
netic response of the electrons in the FISDW state to
the electric field Ey. The expression for the diagram is
sensitive to the ratio of the frequency ω and the wave
vector q of the field Ey when both ω and q approach
zero. Eqs. (19) and (20) correspond to the so-called
dynamic limit where q/ω = 0 [10]. This limit is appro-
priate in our case, because the electric field is, suppos-
edly, strictly homogeneous in space (q = 0), but may be
time-dependent (ω 6= 0). The effective periodic poten-
tial (13) is also time-dependent. In the opposite, static
limit ω/q = 0, we obtain the function

fs(T ) = 1 − h̄vF

∫ ∞

−∞

dkx

[

−∂nF(E/kBT )

∂E

]

, (21)

which describes the charge-density response to a static
deformation of the CDW phase, ∂ϕ/∂x, as well as the
superconducting condensate density in London super-
conductors [9, 10]. In the latter cases, the CDW phase
or magnetic field in the Meissner effect are stationary
(ω = 0), but vary in space (q 6= 0). Comparing Eqs.
(19) and (21), one can see that f(T ) and fs(T ) are dif-
ferent. We obtain Eqs. (19) and (21) by summing over
the internal frequency of the loop first. Different, but
equivalent expressions for f(T ) and fs(T ) were obtained
in Ref. [10] by integrating over the internal momentum
of the loop first.

The diagrammatic derivation is not very transpar-
ent physically, so below we offer another derivation of
Eq. (19), based on the ideas of Refs. [9, 15]. Let us
consider a one-dimensional electron system subject to
a CDW/SDW of the amplitude ∆0, which moves with
a small velocity vDW. Let us calculate the Fröhlich
current proportional to vDW at a finite temperature T .
We find the electron wave functions in the reference
frame moving with the density wave and then Galileo-
transform them to the laboratory frame [15]:

ψ±
k (x, t)=u±k e

i(kF+k+mvDW)x−i(kF+k)vDWt∓iEkt/h̄

+w±
k e

i(−kF+k+mvDW)x−i(−kF+k)vDWt∓iEkt/h̄,(22)

where we denote k = kx and keep only the terms linear
in vDW. In Eq. (22) and below, the index ± refers
to the states above and below the CDW/SDW energy
gap, not to the states near ±kF. The coefficients of
superposition, uk and wk, are given by the following
expressions:

|u+
k |2 = |w−

k |2 =
∆2

0

2Ek(Ek − ξk)
, (23)

|w+
k |2 = |u−k |2 =

Ek − ξk
2Ek

, (24)

where ξk = h̄vFk and Ek =
√

ξ2k + ∆2
0 are the electron

dispersion laws in the absence and in the presence of
the CDW/SDW gap.

By analogy with the standard derivation of the su-
perfluid density [16], let us assume that, because of in-
teraction with impurities, phonons, etc., the electron
quasiparticles are in thermal equilibrium with the crys-
tal in the laboratory reference frame, so their distri-
bution function is the equilibrium Fermi function nF.
However, it is not straightforward to apply the Fermi
function, because the two components of the eigenfunc-
tion (22), which have the same energy in the reference
frame of the moving CDW/SDW, have different ener-
gies in the laboratory frame. Let us make a reasonable
assumption that a state (22) is populated according to
its average energy Ē±

k :

Ē±
k =|u±k |2(±Ek + h̄(kF + k)vDW)

+ |w±
k |2(±Ek + h̄(−kF + k)vDW). (25)

The electric current I carried by the electrons is equal
to

I = 2eh̄
∑

±

∫ ∞

−∞

dk

2π
nF

(

Ē±
k

kBT

)

(26)

×
[

|u±k |2
(

kF + k

m
+
vDW

h̄

)

+ |w±
k |2

(−kF + k

m
+
vDW

h̄

)]

,

where the factor 2 comes from the spin. Substituting
Eq. (25) into Eq. (26) and keeping the terms linear in
vDW, we find two contributions to I. The first contri-
bution, I1, is obtained by replacing Ē±

k by ±Ek in Eq.
(26), that is, by omitting vDW in Eq. (25). This term
represents the current produced by all electrons moving
with the velocity vDW:

I1 = 2evDW2kF/2π. (27)

The second contribution, I2, comes from expansion of
the Fermi function in Eq. (26) in vDW and represents
reduction of the current due to thermally excited quasi-
particles staying behind the collective motion:

I2=2emvDW

∑

±

∫ ∞

−∞

dk

2π

∂nF(±Ek/kBT )

∂Ek

×
[

vF(|u±k |2 − |w±
k |2) +

h̄k

m
(|u±k |2 + |w±

k |2)
]2

. (28)
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The second term in the brackets in Eq. (28) is small
compared to the first term and may be neglected. Sub-
stituting Eqs. (23) and (24) into Eq. (28) and expressing
the CDW/SDW velocity in terms of the CDW/SDW
phase derivative in time, vDW = −ϕ̇/2kF, we find the
temperature-dependent expression for the Fröhlich cur-
rent:

I = I1 + I2 = −ef(T )ϕ̇/π, (29)

f(T ) = 1 −
∫ ∞

−∞

dξk

(

ξk
Ek

)2 [

−∂nF(Ek/kBT )

∂Ek

]

. (30)

Eq. (30) is the same as Eq. (19). Dividing the current
per one chain, I (29), by the interchain distance b, we
get the density of current per unit length, jx (16).
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