All-electric Spin Transistors

Tse-Ming Chen

Department of Physics, NCKU

What is transistor (or MOSFET)?

If is said that if a cell is the building block of life, then a transistor is the building block of the digital era.

Semiconductor Scaling

Doom of Moore' s Law (and the semiconductor industry)???

Beyond MOSFET

MOSFET

Quantum Computing

(superposition & entanglement)

Serge Haroche and David J. Wineland 2012 Nobel Prize

Photo courtesy of NASA

3.

Giant Magnetoresistance (GMR) Albert Fert and Peter Grünberg 2007 Nobel Prize

Datta-Das spin FET

Spintronic Computing

(spin)

- Spin switch faster than THz 1.
- New functionality 2.
 - Less energy consumption

Spin-transfer torque RAM STT-RAM

nature MILESTONES SPIN

	MILESTONES TIMELINE	1964	Kondo effect (12)
1896	Zeeman effect (1)	1971	Supersymmetry (13)
1922	Stern–Gerlach experiment (2)	1972	Superfluid helium-3 (14)
1925	The spinning electron (3)	1973	Magnetic resonance imaging (15)
1928	Dirac equation (4)	1975–1976	NMR for protein structure determination (16)
	Quantum magnetism (5)	1978	Dilute magnetic semiconductors (17)
1932	lsospin (6)	1988	Giant magnetoresistance (18)
1940	Spin-statistics connection (7)	1990	Functional MRI (19)
1946	Nuclear magnetic resonance (8)		Proposal for spin field-effect transistor (20)
1950s	Development of magnetic devices (9)	1991	Magnetic resonance force microscopy (21)
1950–1951	NMR for chemical analysis (10)	1996	Mesoscopic tunnelling of magnetization (22)
1951	Einstein–Podolsky–Rosen argument in spin variables (11)	1997	Semiconductor spintronics (23)

http://www.nature.com/milestones/milespin/index.html

Outline

What is spin FET and Why realization of it still seems to be impossible?

Our contribution to spin FET, and probably many other spintronic devices

MOSFET vs SpinFET

Figure courtesy of Intel

Figure adapted from Hall and Flatte, APL 2006.

NAND2 Energy-Delay

Figure adapted from Nikonov, Proceedings of the IEEE 101, 2498 (2013).

Datta-Das Spin-FET

Key components of spin FET (proposed by Datta and Das in 1990)

- Spin injection/detection using ferromagnetism
- Spin control using electric field to control the spin rotation

Rashba spin-orbit coupling

Rashba spin-orbit coupling & spin precession

Datta and Das showed in APL 56, 665 (1990) that for electron spins travelling in a 1D channel

the precession frequency is

$$\omega_{\rm L} = 2\alpha k_x / \hbar$$

and the phase shift for spins **ballistically** travelling in a distance *L* is

$$\Delta\theta = \omega_{\rm L}t = 2m^* \alpha L/\hbar^2$$

$$\Delta \theta = \omega_{\rm L} t = 2m^* \alpha L / \hbar^2$$

In order to achieve $\Delta \theta = 2\pi$, *L* must be at least 2 µm for $\Delta \alpha = 3E-12$ eVm

Appelbaum et al., Nature 447, 295 (2007)

Obstacles to the realization of spin FET...

low spin-injection efficiency

due to resistance mismatch [Schmidt et al., PRB 62, R4790 (2000)]

limited spin lifetime

picoseconds, due to D'yakonov-Perel' scatterings

phase spread of accumulated spins

due to various precession angles resulted from different paths from source to drain

Can we find a solution1) to overcome all the obstacles and2) for very-large-scale integration (VLSI)?

Our proposed solution is to employ

Quantum Point Contacts

Quantum point contacts & Spin injection

QPC spin injection through e-e interaction

- > 0.7 structure implying spin polarization.
- Possible fully spin polarization (manifested as the 0.25 structure) was first proposed by T.-M. Chen *et al.*, APL 93, 032102 (2008), and then was verified by T.-M. Chen *et al.*, PRL 109, 177202 (2012).

Quantum point contacts & Spin injection

QPC spin injection through spin-orbit coupling

SO coupling results in two spinpolarized 1D subbands shifted horizontally along the k_x wavevector.

$$E_{\pm} = \frac{\hbar^2}{2m^*} (k \pm \frac{m^* \alpha}{\hbar^2})^2 - \frac{m^* \alpha^2}{2\hbar^2}$$

- Only one spin-species is present in the either right- (+k_x) or the left- (-k_x) moving direction if the Fermi energy lies below the crossing point, thereby allowing for spin injection/detection.
- Unable to tell from QPC conductance.

Quantum point contacts & Spin injection

QPC spin injection through spin-orbit coupling & e-e interaction

Debray et al. in Nature Nanotech. 4, 759 (2009) proposed that the e-e interaction coexist with SOI when QPCs are operated near threshold.

Datta-Das Spin FET

All-electric all-semiconductor Spin FET

- Asymmetrically biasing the QPCs to generate a lateral SO coupling
- QPC spin injector/detector with 100% efficiency is created

Spin FET

- ➢ Oscillatory on/off modulation up to 500%
- Resistance modulation is 100,000 times greater than that observed by Koo et al. (Science 2009)

Spatial spin separation

The magnetic field, B_f, required to focus electrons at a distance L is

$$B_{\rm f}^{(p)} = \left(\frac{2\hbar k_{\rm F}}{eL}\right)p$$

In the presence of SO, up- and down-spin electrons have different momenta, leading to different cyclotron orbits and focusing peaks.

$$k_{F,\downarrow} = k_0 + m^* \alpha / \hbar^2$$
$$k_{F,\uparrow} = k_0 - m^* \alpha / \hbar^2$$

Influence of QPC conductance & temperature

- Oscillation amplitude decreases with increases QPC conductance, consistent with the model of 1D + SO coupling
- ➢ Our prototype spin FET survives up to ∼ 17 K only
- Working temperature could be improved by introducing a larger spin splitting using wet-etched QPC or InAs nanowires

Simultaneous magnetic and electrical control of spin precession

$$\omega_{\rm L} = (2\alpha k_x - g\mu_{\rm B}B_{\rm ext})/\hbar$$
$$\Delta \theta = \omega_{\rm L}t = 2m^* \alpha L/\hbar^2 - g\mu_{\rm B}B_{\rm ext}m^*L/k_x\hbar^2$$

- Our spin FET allows us to combine magnetic and electrical controls of spin precession.
- Theoretical simulations performed
- Good quantitative agreement obtained between experiment and theory

Challenges remain...

- > on/off ratio still not large enough
- working temperature still low

QPC spin filter used in other spin transistors

Non-ballistic spinFET

Schliemann et al., Phys. Rev. Lett. 90, 146801 (2003).

Spin Hall Effect Transistor

Wunderlich et al., Science 330, 1801 (2010).

Acknowledgement

Material growth & Device fabrication

L. W. Smith, F. Sfigakis, M. Pepper, J. P. Griffiths, G. Jones, I. Farrer, H. E. Beere, D. A. Ritchie. T.-M. Chen

Summary

- The world's first working spin FET realized by utilizing QPCs.
- The world's first all-electric all-semiconductor spin transistor

THANK YOU!!