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Outline

• Classical and quantum spin glasses

• Quantum annealing for quantum computing

Classical (thermal) fluctuations

versus

Quantum fluctuations (tunneling)

•Computational studies of 
model systems (spin glasses)

•Relevance for adiabatic 
quantum computing 

• Dynamical critical scaling

• Monte Carlo simulations and simulated annealing
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Example:
Particles with 
hard and soft 
cores (2 dim)

Monte Carlo Simulations

What happens when the temperature is lowered ?

P ({ri}) / e�E/T , E =
X

r1,r2

V (ri � rj)
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Monte Carlo Simulations

Transition into liquid state has taken place

Slow movement & growth of droplets

Is there a better way to reach equilibrium at low T?
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Simulated Annealing

Annealing: Removal of
crystal defects by heating
followed by slow cooling

Simulated Annealing:
MC simulation with
slowly decreasing T
- Can help to reach
   equilibrium faster

Optimization method:
express optimization of
many parameters as
minimization of a 
cost function, treat as
energy in MC simulation

Similar scheme in quantum mechanics?
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Quantum Annealing

Reduce quantum fluctuations as a function of time
- start with a simple quantum Hamiltonian (s=0)
- end with a complicated classical potential (s=1)

Hclassical = V (x) Hquantum = � ~2
2m

d2

dx2

Adiabatic Theorem:
If the velocity v is small enough
the system stays in the ground state
of H[s(t)] at all times

Can quantum annealing be more efficient than thermal annealing?

At t=tmax we then know the minimum of V(x):  (x) = �(x� x0)

Useful paradigm for quantum computing?

H(s) = sHclassical + (1� s)Hquantum

s = s(t) = vt, v = 1/t
max

Ray, Chakrabarty,Chakrabarty (PRB 1989), Kadowaki, Nishimory (PRE 1998),...
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Quantum Annealing & Quantum Computing

D-wave “quantum annealer”; 512 flux q-bits
- Claimed to solve some hard optimization problems
- Is it really doing quantum annealing?
- Is quantum annealing really better  
  than simulated annealing 
  (on a classical computer)?

Hamiltonian implemented in D-wave quantum annealer....
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Spin Glasses
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Figure 1: A frustrated 4-spin Ising system with three ferromagnetic (solid lines) and one antifer-
romagnetic (dashed line) interaction. Solid and open circles correspond to up and down spins,
respectively. The configurations shown, and the ones obtained from them by flipping all spins, are
the ones with the lowest energy; E = �2. One of the interactions (bonds) is always “unsatisfied”.

Spin glasses

A spin glass is a spin system in which the interactions are random and frustrated. Frustration
refers to the inability of the interacting spins to minimize simultaneously the energy of all bonds
(interacting pairs). An example is shown in Fig. 1. Here three out of the four interactions are
ferromagnetic, J12 = J23 = J41 = �1, whereas one is antiferromagnetic, J34 = +1. In such a 4-spin
systems with all interactions equal, all Jij = 1 or all +1, the lowest-energy configurations are the
ones minimizing all the bond energies, �i�j = �1, independently of the sign of the interaction.
There are two such configurations. In contrast, in the example shown in the figure, the energy is

E(�) = ��1�2 � �2�3 + �3�4 � �4�1, (2)

and in the states with minimum energy, E = �2, one of the bonds must be in the high-energy
state (an ”unsatisfied” interaction). There are four lowest-energy configurations; the ones shown
plus the two obtained by flipping all their spins.

In an Ising spin glass with a large number of spins the number of lowest-energy configurations
(ground states) grows exponentially with increasing number of spins. It is in general very di�cult to
find those configurations. At finite temperature, a spin glass model may exhibit a glass transition,
below which in practice all the configurations cannot be sampled in a Monte Carlo simulation
utilizing flips of individual spins. The system “gets stuck” around a local energy minimum from
which it cannot escape within reasonable simulation times. There are also spin glasses in nature,
and they also exhibit glass transitions. The behavior is similar to that of amorphous materials such
as normal glass; thus the name “spin glass”.

Spin glass models are often studied using simulated annealing methods. One interesting aspect is
to study the glass transition. Normally the transition temperature Tg is not known, at least not to
very high precision, and it is then useful to start the simulation at high temperature and slowly cool
it. Above the glass transition such a simulation will be able to explore the full configuration space
of the system—it is said to be ergodic. However, as the transition temperature is approached, the
colling rate has to be decreased exponentially fast in order for the simulation to be ergodic. For a
very large system one can in practice not achieve ergodic sampling below some temperature close
to the glass transition. For ergodic sampling of a finite system at T < Tg, exponentially longer
simulation times are required with increasing system size N . In practice, the glass transition can
be seen in results obtained in several di↵erent annealing runs: For T > Tg all simulations will give
similar results for measured quantities, whereas for T < Tg di↵erent results will be obtained in
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Hard to find ground states if the interactions 
are highly frustrated (spin glass phase)
- many states with same or almost same energy

Many (almost all) optimization problems can be 
mapped onto some general model
- hard problems correspond to spin glass physics

Quantum fluctuations (quantum spin glasses) 
- add transversal field Ising (H → H + Hquantum)

Hquantum = �h

NX

i=1

�x

i

= �h

NX

i=1

(�+
i

+ ��
i

)

Ising models with frustrated interactions

H =
NX

i=1

NX

j=1

Jij�
z
i �

z
j , �z

i 2 {�1,+1}

The D-wave
machine is 
based on this 
model on a 
special lattice

Nature of ground states of H depends on h and {Jij} 
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Quantum Phase Transition

There must be a quantum phase transition in the system

Ground state changes qualitatively as s changes
- trivial (easy to prepare) for s=0
- complex (solution of hard optimization problem) at s=1
→ expect a quantum phase transition at some s=sc

- trivial x-oriented ferromagnet at s=0 (→→→)
- z-oriented (↑↑↑or ↓↓↓, symmetry broken) at s=1
- sc=1/2 (exact solution, mapping to free fermions)

Simple example: 1D transverse-field Ising ferromagnet

(N ! 1)h = �s
NX

i=1

�z

i

�z

i+1 � (1� s)
NX

i=1

�x

i

Let’s look at a simpler problem first...

H(s) = sHclassical + (1� s)Hquantum

Have to pass through sc and beyond adiabatically
- how long does it take? s = s(t) = vt, v = 1/t

max
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Landau-Zener Problem

Single spin in magnetic field, with mixing term

H = �h�z � ✏�x = �h�z � ✏(�+ + ��)

-1 -0.5 0 0.5 1
h
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"#
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�

Eigen energies are

E = ±
p

h2 + ✏2

Time-evolution:

h(t) = �h0 + vt
To stay adiabatic
when crossing h=0,
the velocity must be

v < �2 (time > ��2)
Suggests the smallest gap is important in general
- but states above the gap play role in many-body system

Smallest gap: Δ=2ε

What can we expect at a quantum phase transition?
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Dynamic Critical Exponent and Gap
Dynamic exponent z at a phase transition
- relates time and length scales

Continuous quantum phase transition
- excitation gap at the transition
   depends on the system size and z as

� ⇠ 1

Lz
=

1

Nz/d
, (N = Ld)

At a continuous transition (classical or quantum):
- large (divergent) correlation length

⇠r ⇠ |�|�⌫ , ⇠t ⇠ ⇠zr ⇠ |�|�⌫z δ = distance from critical 
point (in T or other param)

Classical (thermal) phase transition
- Fluctuations regulated by temperature T>0
Quantum (ground state, T=0) phase transition
- Fluctuations regulated by parameter g in Hamiltonian

Classical and quantum phase transitions

There are many similarities between classical and quantum transitions
- and also important differences
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FIGURE 3. Temperature (T ) or coupling (g) dependence of the order parameter (e.g., the magnetization
of a ferromagnet) at a continuous (a) and a first-order (b) phase transition. A classical, thermal transition
occurs at some temperature T = Tc, whereas a quantum phase transition occurs at some g= gc at T = 0.

where the spin correlations decay exponentially with distance [60].
While quasi-1D antiferromagnets were actively studied experimentally already in the

1960s and 70s, these efforts were further stimulated by theoretical developments in the
1980s. Haldane conjectured [55], based on a field-theory approach, that the Heisenberg
chain has completely different physical properties for integer spin (S = 1,2, . . .) and
“half-odd integer” spin (S = 1/2,3/2, . . .). It was known from Bethe’s solution that the
S = 1/2 chain has a gapless excitation spectrum (related to the power-law decaying
spin correlations). Haldane suggested the possibility of the S= 1 chain instead having a
ground state with exponentially decaying correlations and a gap to all excitations; a kind
of spin liquid state [26]. This was counter to the expectation (based on, e.g., spin wave
theory) that increasing S should increase the tendency to ordering. Haldane’s conjecture
stimulated intense research activities, theoretical as well as experimental, on the S = 1
Heisenberg chain and 1D systems more broadly. There is now completely conclusive
evidence from numerical studies that Haldane was right [61, 62, 63]. Experimentally,
there are also a number of quasi-one-dimensional S = 1/2 [64] and S = 1 [65] (and
also larger S [66]) compounds which show the predicted differences in the excitation
spectrum. A rather complete and compelling theory of spin-S Heisenberg chains has
emerged (and includes also the VBS transitions for half-odd integer S), but even to this
date various aspects of their unusual properties are still being worked out [67]. There are
also many other variants of spin chains, which are also attracting a lot of theoretical and
experimental attention (e.g., systems including various anisotropies, external fields [68],
higher-order interactions [69], couplings to phonons [70, 71], long-range interactions
[72, 73], etc.). In Sec. 4 we will use exact diagonalization methods to study the S= 1/2
Heisenberg chain, as well as the extended variant with frustrated interactions (and also
including long-range interactions). In Sec. 5 we will investigate longer chains using the
SSE QMC method. We will also study ladder-systems consisting of several coupled
chains [9], which, for an even number of chains, have properties similar to the Haldane
state (i.e., exponentially decaying spin correlations and gapped excitations).

2.4. Models with quantum phase transitions in two dimensions

The existence of different types of ground states implies that phase transitions can
occur in a system at T = 0 as some parameter in the hamiltonian is varied (which
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In both cases phase transitions can be
- first-order (discontinuous): finite correlation length ξ as g→gc or g→gc
- continuous: correlation length diverges, ξ~|g-gc|-ν or ξ~|T-Tc|-ν
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Exponentially small gap at a first-order
(discontinuous) transition

� ⇠ e�aL

Exactly how does z enter in the adiabatic criterion? 

Important issue for quantum annealing!
P. Young et al. (PRL 2008)
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Kibble-Zurek Velocity and Scaling

The adiabatic criterion for passing through a continuous 
phase transition involves more than z

Kibble 1978
- defects in early universe
Zurek 1981
- classical phase transitions
Polkovnikov 2005
- quantum phase transitions

Same criterion for classical
and quantum phase transitions
- adiabatic (quantum)
- quasi-static (classical)

Generalized finite-size scaling hypothesis

A(�, v, L) = L�/⌫g(�L1/⌫ , vLz+1/⌫)

A(�, v,N) = N�/⌫0
g(�N1/⌫0

, vNz0+1/⌫0
), ⌫0 = d⌫, z = z/d

Will use for spin glasses of interest in quantum computing

Apply to well-understood clean system first...

Must have v < vKZ, with

vKZ ⇠ L�(z+1/⌫)

12Tuesday, March 10, 15



Fast and Slow Classical Ising Dynamics

Repeat many times, collect averages, analyze,....
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v Lz+1/ν
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<
m
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2β
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L = 128
L = 192
L = 256
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L = 1024
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power-law fit

104 105 10610-3

10-2
L = 128

Velocity Scaling, 2D Ising Model

Repeat process many times, average data for T=Tc

Used known 2D 
Ising exponents
β=1/8, ν=1

Result: z ≈2.17
consistent with
values obtained
in other ways

Adjusted z for
optimal scaling
collapse

Liu, Polkovnikov,
Sandvik, PRB 2014

Can we do something like this for quantum models?

hm2(� = 0, v, L)i = L�2�/⌫f(vLz+1/⌫)
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Quantum Evolution in Imaginary Time

| (⌧)i = U(⌧, ⌧0)| (⌧0)i
Schrödinger dynamic at imaginary time t=-iτ

Dynamical exponent z same as in real time!
(DeGrandi, Polkovnikov, Sandvik, PRB2011)

• Can be implemented in quantum Monte Carlo

Simpler scheme: evolve with just a H-product
(Liu, Polkovnikov, Sandvik, PRB2013)

| (⌧)i =
1X

n=0

Z ⌧

⌧0

d⌧n

Z ⌧n

⌧0

d⌧n�1 · · ·
Z ⌧2

⌧0

d⌧1[�H(⌧n)] · · · [�H(⌧1)]| (0)i

Time evolution operator

U(⌧, ⌧0) = T⌧exp


�
Z ⌧

⌧0

d⌧ 0H[s(⌧ 0)]

�

How does this method work?

| (sM )i = H(sM ) · · ·H(s2)H(s1)| (0)i, si = i�s, �s =
sM
M
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h (0)|H(s1) · · ·H(s7)|H(s7) · · ·H(s1)| (0)i

QMC Algorithm Illustration

H1(i) = �(1� s)(�+
i + ��

i )

H2(i, j) = �s(�z
i �

z
j + 1)

Transverse-field Ising model: 2 types of operators:

12345677654321 12345677654321 12345677654321
12345677654321

Represented as “vertices”

Similar to ground-state projector QMC

How to define (imaginary) time in this method?

12345677654321

MC sampling of networks of vertices

N = 4

M = 7
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Time and velocity Definitions

The parameter in H changes as

si = i�s, �s =
sM
M

Def reproduces v-dependence in 
imag-time Schrödinger dynamics 
to order v (enough for scaling)

Time unit is ∝1/N, velocity is

v / N�s

To this order we can use
“asymmetric” expectation values

All s in one simulation!

hAik = h (0)|
1Y

i=M

H(si)
MY

i=k

H(si)A
kY

i=1

H(si)| (0)ihAik = h (0)|
1Y

i=M

H(si)
MY

i=k

H(si)A
kY

i=1

H(si)| (0)i

Collect data, do scaling analysis...
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2D Transverse-Ising, Scaling Example

A(�, v, L) = L�/⌫g(�L1/⌫ , vLz+1/⌫)

If z, ν known, sc not: use

vLz+1/⌫
= constant

for 1-parameter scaling

Example: Binder cumulant

Should have step from
U=0 to U=1 at sc

- crossing points for
   finite system size

Do similar studies for quantum spin glasses
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Note on QMC Simulation Dynamics

Recent work claimed the D-wave
machine shows behavior similar to 
“simulated quantum annealing”
[S. Boixio, M. Troyer et al., Nat. Phys. 2014]

H(s) evolved in simulation time

Is this the same as Hamiltonian
quantum dynamics?

NO! Only accesses the dynamics
of the QMC method

3

The 3-regular graphs have d = 1 and we will use N for
the size. To convert to unprimed exponents the upper
critical dimension should then be used; d = d

u

.
The existence of a characteristic velocity suggests a

generalized finite-size scaling form for singular quantities
at the critical point. For quantities calculated at the final
time t

f

when s = s
c

, and when v / vKZ or lower, the
order parameter takes the form

hq2i ⇠ N�2�/⌫0
f(vNz

0
r+1/⌫0

), (8)

and we can extract �, ⌫0, z0 by analyzing results for two
di↵erent values of the quench parameter r [31].

Hamiltonian versus simulation dynamics.—Before pre-
senting QAQMC results for the 3-regular graphs, let us
comment on stochastic simulation-time dynamics and the
method of changing H as a function of the simulation
time. This approach is normally considered with thermal
QMC simulations [15, 37] but can also be implemented in
the QAQMC. To illustrate this we use the ferromagnetic
d = 1 TFIM. We use a relatively large number of opera-
tors in the operator sequence in (4), m = 4N2 (su�cient
for ground-state convergence at all s in equilibrium), and
keep s the same for all operators. The simulation starts
at s = 0 and s is changed linearly at velocity v until
s
c

= 1/2 is reached. At this stage the magnetization is
calculated. The procedure is repeated many times to ob-
tain hm2

z

i. The velocity is defined using a time unit of
a sweep of either local updates (a Metropolis procedure
where small segments of spins are flipped) or cluster up-
dates (a generalization of the Swendsen-Wang, SW, clus-
ter updates [38, 39]) throughout the system. Using the
scaling ansatz (8) for hm2

z

i, we extract the dynamic ex-
ponent characterizing the approach to the critical point
with the local and cluster updates, and compare with
the exponent computed with QAQMC with s is evolv-
ing within the operator string in Eq. (4). In the latter
case there is no dependence on the type of MC updates
(but cluster updates give results with smaller statistical
errors for a given simulation time) and we should detect
Hamiltonian dynamics with z = 1.

The scaling analysis for all the cases is presented in
Fig. 1. The static exponents are known (those of the
d = 2 classical Ising model), � = 1/8 and ⌫ = 1, and
we use these to produce scaling plots according to the
form (8). We suspect that the simulation-time dynamics
should be the same as in the classical d = 2 Ising model
with local and SW updates, and therefore test scaling
with z = 2.17 and z = 0.30, respectively (as recently
computed using KZ scaling in Ref. 31). In all cases the
data collapse is very good for su�ciently large systems
and low velocities. The straight lines in the log-log plots
have slopes given by the exponent

x =
d� 2�/⌫

zr + 1/⌫
=

1� 2�/⌫0

z0r + 1/⌫0
, (9)
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N=8

3-regular graphs

Ising spin glass with coordination-number 3
- N spins, randomly connected to each other
- all antiferromagnetic couplings
- frustration because of closed odd-length loops

• sc ≈ 0.37 from quantum cavity approximation

• QMC consistent with this sc, power-law gaps at sc

The quantum model was studied by
Farhi, Gosset, Hen, Sandvik, Shor, Young, Zamponi, PRA 2012

More detailed studies with quantum annealing...
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Spin-Glass order Parameter

Spin glasses are massively-degenerate
- many “frozen” states
- replica symmetry breaking (going into one state)

Edwards-Anderson order parameter

q =
1

N

NX

i=1

�z
i (1)�

z
i (2)

(1) and (2) are from independent simulations (replicas)
- with same random interactions
- |q| large if the two replicas are in similar states

<q2> > 0 for N →∞ in spin-glass phase (disorder average)

Cannot use a standard order parameter such as <m2>
- nor any Fourier mode
- since no periodic ordering pattern

Analyze <q2> using QMC and velocity scaling
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Extracting Quantum-glass transition

Using Binder cumulant

U(s, v,N) = U [(s� sc)N
1/⌫0

, vNz0+1/⌫0
]

But now we don’t know 
the exponents. Use

v / N�↵, ↵ > z0 + 1/⌫0

- do several α
- check for consistency

Consistent with previous
work, but smaller errors

Next, critical exponents...

sc = 0.3565 +/- 0.0012

Best result for α=17/12 
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FIG. 2: (Color online) Crossing points between Binder cumu-
lants for 3-regular graphs with N and N+64 spins, extracted
using the curves shown in the inset. The results were obtained
in quenches with v ⇠ N�↵ for ↵ = 17/12. The curve in the
main panel is a power-law fit for extrapolating sc.

were in good agreement with this estimate. The error
bars on these calculations is several percent.

We find s
c

using r = 1 QAQMC with v / N�↵, where
↵ exceeds the KZ exponent z0 + 1/⌫0 (which is unknown
but later computable for a posteriori verification). Then
hq2i ⇠ N�2�/⌫0

at s
c

because f(x) in Eq. (8) approaches
a constant when x ! 0. As illustrated in Fig. 2, quench-
ing past the estimated s

c

, we use a curve crossing analysis
of the Binder cumulant, U = (3� hq4i/hq2i2)/2, and ob-
tain s

c

= 0.3565(12). This value agrees well with the
previous results but has smaller uncertainty.

Performing additional quenches to s
c

using protocols
with both r = 1 and r = 2/3 in Eq. (5) we extract all
the critical exponents. An example of scaling collapse
for r = 1 is shown in Fig. 3. Here all exponents are
treated as adjustable parameters for obtaining optimal
data collapse. The vertical and horizontal scalings give
the ratio �/⌫0 and the KZ exponent z0+1/⌫0, respectively,
and the slope in the linear regime is the exponent (9).
Combining results for r = 1 and r = 2/3 we obtain the
exponents � = 0.54(1), ⌫0 = 1.26(1), and z0 = 0.52(2).

Interestingly, the exponents are far from those ob-
tained using Landau theory [41] and other methods [42]
for large-d and fully connected (d = 1 [43]) Ising models
in a transverse field; � = 1, ⌫0 = 2 and z0 = 1/4 (d

u

= 8)
[41]. One might have expected the same mean-field ex-
ponents for these systems, as in the classical case. A
QMC calculation for the fully-connected model [44] was
not in complete agreement with the Landau values. It
was argued that z = 4, which, with d

u

= 8, agrees with
our z0 ⇡ 1/2 for the 3-regular graphs. However, � was
close to 1 and ⌫ = 1/4 (⌫0 = 2) was argued. It would
be interesting to study n-regular graphs and follow the
exponents from n = 3 to large n.

Implications for quantum computing.—The critical ex-
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FIG. 3: (Color online) Optimized scaling collapse of the or-
der parameter in critical quenches of 3-regular graphs, giving
the exponents listed in the text. The line has slope given in
Eq. (9) and the points above it deviate due to high-velocity
cross-overs [31] not captured by Eq. (8). For N ! 1 the
linear behavior should extend to infinity.

ponents contain information relevant to QA quantum
computing. In the classical case the KZ exponent is
z0 + 1/⌫0 = 1, while in the quantum system z0 + 1/⌫0 ⇡
1.31. Thus, by Eq. (7) the adiabatic annealing time grows
faster with N in QA. Furthermore, since the critical or-
der parameter scales asN�2�/⌫0

, the critical cluster is less
dense with QA, i.e., it is further from the state sought
when s ! 1 (the solution of the optimization problem).
Thus, in both these respects QA performs worse than SA
in passing through the critical point (while QA on the
fully-connected model, with the exponents of Ref. [41],
would reach s

c

faster than SA, though the critical clus-
ter is still less dense). QA can be made faster than SA
by following a protocol (5) with su�ciently large r, but
this may not be practical when s

c

is not known and the
goal is anyway to proceed beyond this point. While our
results do not contain any quantitative information on
the process continuing from s

c

to s = 1, it is certainly
discouraging that the initial stage of QA is ine�cient.

It would be interesting to run the D-Wave machine
[11, 12] as well on a problem with a critical point and
study velocity scaling. This would give valuable insights
into the nature of the annealing process.
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were in good agreement with this estimate. The error
bars on these calculations is several percent.

We find s
c

using r = 1 QAQMC with v / N�↵, where
↵ exceeds the KZ exponent z0 + 1/⌫0 (which is unknown
but later computable for a posteriori verification). Then
hq2i ⇠ N�2�/⌫0

at s
c

because f(x) in Eq. (8) approaches
a constant when x ! 0. As illustrated in Fig. 2, quench-
ing past the estimated s

c

, we use a curve crossing analysis
of the Binder cumulant, U = (3� hq4i/hq2i2)/2, and ob-
tain s

c

= 0.3565(12). This value agrees well with the
previous results but has smaller uncertainty.

Performing additional quenches to s
c

using protocols
with both r = 1 and r = 2/3 in Eq. (5) we extract all
the critical exponents. An example of scaling collapse
for r = 1 is shown in Fig. 3. Here all exponents are
treated as adjustable parameters for obtaining optimal
data collapse. The vertical and horizontal scalings give
the ratio �/⌫0 and the KZ exponent z0+1/⌫0, respectively,
and the slope in the linear regime is the exponent (9).
Combining results for r = 1 and r = 2/3 we obtain the
exponents � = 0.54(1), ⌫0 = 1.26(1), and z0 = 0.52(2).

Interestingly, the exponents are far from those ob-
tained using Landau theory [41] and other methods [42]
for large-d and fully connected (d = 1 [43]) Ising models
in a transverse field; � = 1, ⌫0 = 2 and z0 = 1/4 (d

u

= 8)
[41]. One might have expected the same mean-field ex-
ponents for these systems, as in the classical case. A
QMC calculation for the fully-connected model [44] was
not in complete agreement with the Landau values. It
was argued that z = 4, which, with d

u

= 8, agrees with
our z0 ⇡ 1/2 for the 3-regular graphs. However, � was
close to 1 and ⌫ = 1/4 (⌫0 = 2) was argued. It would
be interesting to study n-regular graphs and follow the
exponents from n = 3 to large n.
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the exponents listed in the text. The line has slope given in
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ponents contain information relevant to QA quantum
computing. In the classical case the KZ exponent is
z0 + 1/⌫0 = 1, while in the quantum system z0 + 1/⌫0 ⇡
1.31. Thus, by Eq. (7) the adiabatic annealing time grows
faster with N in QA. Furthermore, since the critical or-
der parameter scales asN�2�/⌫0

, the critical cluster is less
dense with QA, i.e., it is further from the state sought
when s ! 1 (the solution of the optimization problem).
Thus, in both these respects QA performs worse than SA
in passing through the critical point (while QA on the
fully-connected model, with the exponents of Ref. [41],
would reach s

c

faster than SA, though the critical clus-
ter is still less dense). QA can be made faster than SA
by following a protocol (5) with su�ciently large r, but
this may not be practical when s

c

is not known and the
goal is anyway to proceed beyond this point. While our
results do not contain any quantitative information on
the process continuing from s

c

to s = 1, it is certainly
discouraging that the initial stage of QA is ine�cient.

It would be interesting to run the D-Wave machine
[11, 12] as well on a problem with a critical point and
study velocity scaling. This would give valuable insights
into the nature of the annealing process.
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Study evolution to sc

- several system sizes N
- several velocities

hq2(sc)i / N�2�/⌫0
f(vNz0+1/⌫0

)

Velocity Scaling at the Glass Transition

2β/ν‘ ≈ 0.86
z’+1/ν’ ≈ 1.3

Do the exponents have any significance?

These values differ 
from the values 
expected for d=∞:

2β/ν‘ = 1
z’+1/ν’ ≈ 3/4

Reason unclear.
Fully-connected 
model gives same
exponents as 3-regular
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Relevance to Quantum Computing

The time needed to stay adiabatic up to sc scales as

t ⇠ Nz0+1/⌫ z0 + 1/⌫0 ⇡ 1.31
Reaching sc, the degree of ordering scales as

p
< hq2i > ⇠ N��/⌫0

�/⌫0 ⇡ 0.43

Classical
β/ν‘ = 1/3
z’+1/ν’ = 1

Let’s compare with the know classical exponents
(finite-temperature transition of 3-regular random graphs)

Quantum
β/ν‘ ≈ 0.43
z’+1/ν’ ≈ 1.3

h

T
glass phase

• It takes longer for quantum 
annealing to reach its critical point

•And the state is further from ordered 
(further from the optimal solution)

Proposal: Do velocity scaling with the D-wave machine!
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