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Introduction

Exactly Solvable Quantum Mechanics

d2
1-d QM, given a Hamiltonian H = —— + U(x), x1 < x < xo,

dx?
U(x) € C*=,
e Eigenvalue problem

Hon(x) = Enpn(x), n=0,1,2,..., /X2 $3(x)dx < oo,

e all the discrete eigenvalues {€,} and the corresponding
eigenfunctions {¢,(x)} are exactly calculable

— Exactly Solvable Quantum Mechanics
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Introduction

Typical examples of exactly solvable QM |

2
e harmonic oscillator, H = —d— +x% — 1, —oc0 < x < 400,
2
En = 2n, ¢pp(x) = Po(x)Hn(x): Hermite polynomial,
fo(x) = e /2, +
d)%(X)Hn(X)Hm(X)dX 08 5nm

2 _
e radial oscillator, H = —% +x2 + M —(1+2g),
x2
0 < x < +00, g>1 En=4n,
dn(x) = ¢o (x) L& 1/2)( 2):Laguerre polynomial,
do(x) =€~ /2xg,
B3CNLETAGR)LED (x?)dx o 6ym
0
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Introduction

Typical examples of exactly solvable QM Il

e Poschl-Teller potential,

d? g(g—l) h(h—1) 2
M=t o — (g +h)

0<x<m/2, g>1 h>1 En=4n(n+ g+ h),
®n(x) = do(x) ng 1/2.h= 1/2)(cos2x):Jacobi polynomial,
do(x) = (sin x)&(cos x)",

w/2
/ qS%(x)P,(,g_l/z’h_l/z)(cos 2X)P(g 1/2.h= 1/2)(cos 2x)dx < dpm
0
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Introduction

Motivations for exactly solvable QM |

@ cornerstones of modern quantum physics
@ Heisenberg operator formalism
@ creation, annihilation operators
@ coherent states
@ dynamical symmetry algebras
© Schrodinger eq. i.e. eigenvalue problem of a self-adjoint
Hamiltonian
real eigenvalues and mutually orthogonal eigenfunctions
— unified framework of classical orthogonal polynomials

@ orthogonality weight function = d)%(x): square of the ground
state eigenfunction
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Introduction

Motivations for exactly solvable QM Il

@ new exactly solvable QM
=- new orthogonal polynomials with your name on?
like Hermite, Laguerre or Jacobi?
( )

@ Not so<= Bochner’s Theorem
orthogonal polynomials satisfying second order differential
equations are Classical orthogonal polynomials; Hermite,
Laguerre, Jacobi & Bessel
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Introduction

Bochner's Theorem '29

If polynomials {p,(x)} satisfy three term recurrence relations and a
second order differential equation

a(x)y" + 7(x)y" + Any =0,

they must be one of the Classical orthogonal polynomials, i.e., the
Hermite, Laguerre, Jacobi and Bessel. For y = pp(x) =const,
= X\ = 0. For y = p1(x) = degree(7(x)) < 1. For y = po(x) =

degree(o(x)) <
e deg(o(x)) =2, two equal roots (x = 0) = Bessel
e deg(o(x)) =2, two distinct roots (x = +1) = Jacobi
e deg(o(x)) =1, rootatx=0 = Laguerre
e deg(o(x)) =0 = Hermite
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Introduction

Avoiding Bochner’ constraints

@ polynomials satisfying difference Schrodinger equation
differential eq. = difference eq.
= Wilson, Askey-Wilson, Racah, g-Racah polynomials
@ polynomials having holes (three term recurrence is broken)
in the degree
o polynomials starting at degree / > 1
(completeness not obvious = experts did not think this
option)
@ polynomials satisfying difference Schrodinger equation and
starting at degree ¢ > 1 and having holes in the degree
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New Discovery

Discovery of oo Multi-Indexed Orthogonal Polynomials

@ Infinitely many orthogonal polynomials satisfying second order
differential equations, discovered after Hermite, Laguerre and
Jacobi polynomials (Gomez-Ullate,Kamran,Milson, Quesne,
'08, Odake-RS '09 and others)

@ Multi-Indexed orthogonal polynomials Pp n(x),
D = {di,...,du}, dj € N: degrees of polynomial type seed
solutions (virtual state wave functions) employed by multiple
Darboux transformations, (n counts nodes in (x1, x2))

X2
/ PD,n(X)P’D,m(X)W’D(X)dX = hD,n(snm

X1

o degree ¢ + n polynomial in x, but forming a complete set,
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New Discovery

Discovery of oo Multi-Indexed Orthogonal Polynomials Il

@ No three term recurrence relations

@ main part of the eigenfunctions of exactly solvable
Schrodinger eq.

@ when eigenfunctions are employed, D = {di,...,du}, dj € N:
degrees of the holes

@ global solutions of (confluent) Fuchsian differential equations
with 3 + ¢ regular singularities, all the ¢ extra singularities are
apparent and located outside of the orthogonality interval
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General Recipe Ordinary Quantum Mechanics

Basic Ingredients

e Exactly Solvable Quantum Mechanical System
Hon(x) = Endn(x), & =0, n=0,1,2,...,

e Factorised positive semi-definite Hamiltonian H = ATA >0
@ Multiple Darboux-Crum-Krein-Adler transformation

HY(x) = EY(x),  Hp(x) = Ep(x),
= HOpO () = EvD(x), HO L3 202 log p(x),

(1), def _ Oxp(x) x :M
L O B

e Virtual State solutions, H@,(x) = gvgév(x), E, <0,
Pv(x) >0, veV
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General Recipe Ordinary Quantum Mechanics

Factorised Hamiltonians

Starting point: H with complete set of eigenvalues and
eigenfunctions

H¢n(x) = 5n¢n(x)a (Qbm d)m) = hnénm’ hn > 0, n= 0, 15 25 ceey
by adjusting the const. of H = & =0
= Positive Semi-Definite Hamiltonian H (Hermitian Matrix)

0=& <& <&<, = H=AU

A= d/dx — Oxdo(x)/do(x), Al = —d/dx — Depo(x)/do(x),
¢o(x): ground state wavefunction, no node (¢o(x) > 0),
square integrable Adpp(x) =0

— _d?/dx? x X) — 83¢0(X)
H = —d/dx" + V(x), V(x) = S0 (%)
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General Recipe Ordinary Quantum Mechanics

Use virtual state solutions

o rewrite H by using Ay, di € N, (Ay, annihilates @ (x),
Ad, Gay (X) = 0):

def

= d/dx—8 log B, (x flL = —d/dx — —0x log B4, (x),

Ag, ().
Ao =g+ (20) + 5 (249)

d2 ~I X d2 .
) Sfdl( ) —— + V(x) = &a,
dx Sodl(x) dX

H = /ﬁ,lfidl + &4, Ag :non-singular,

@ define a new Hamiltonian by changing the order of Adl and
~ def ~
-Ale: (1) AdrAT + 5d1 =H- 28)2( log Pdy (X)

di
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General Recipe Ordinary Quantum Mechanics

new exactly solvable Hamiltonian

@ intertwining relation
Hg)f/im = (Adﬂztill + gdl )./thl
= Adl(Ale Adl + gdl) = Ale

° ’Hi): new exactly solvable isospectral Hamiltonian

er 1 W[Pq,, on
(bdl,n(x) d:fAd1¢n(X) = M, n=0,1,...,
Pdr
S W(dd, Gy
(ﬁdl,v(x) d:f Adl(Pv(X) = M, vV € D\dl

Py
HE!]]-_)Qsdlyn(X) = 5n¢d1,n(x)7 Hffi)@dl,v(x) = gv(ﬁdl,v(x)y
(¢d1,n7 ¢d1,m) = ((z)naALlAdlgbm) = (En - é‘:v)hnfsnm



General Recipe Ordinary Quantum Mechanics

new exactly solvable Hamiltonian 2

@ repeat M times by using virtual state solutions specified by
D ={di,day...,du}
@ = new exactly solvable Hamiltonian with multi-index D

ng) def H— 283 log W[@g,, - - - 7<ﬁdM](X)

def W[Szdl’ sy @dl\/l’ an](X)

¢D7H(X) B W[@dp SERE) QZd/\/l](X)
H’g)M)(rb'D,n(X) = gn¢D,n(X)a n= 0) 17 ey
M
(¢D,m d’D,m) = H(gn - gdj) . hnénm
j=1

positive definite inner products £, > 0, fdj < 0.



Exceptional Jacobi Polynomials

Multi-Indexed Orthogonal Polynomials

Example: = Jacobi Polynomial
d? glg—1)  h(h—-1) 2
=—— = _ h
° M Pl V), U sin? x T o x (g+h)"
regular sing. x=0, g,1—g, x=7/2, h,1 —h, A ={g, h},
o ground state wavefunct. ¢o(x) = (sin x)€(cosx)", g, h >0,

o E,(A)=4n(n+g+h), n(x) %f cos 2x

® dn(x;A) = ¢0(X)P:(1g_1/2’h_1/2)(n(x)), P,: Jacobi
polynomial

0 /2
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. K Exceptional Jacobi Polynomials
Multi-Indexed Orthogonal Polynomials eepiitne] Jaeel emeiel

Multi-Indexed Orthogonal Polynomials 1

@ Poschl-Teller potential has virtual state solutions, type | and
Il, generated by the discrete symmetry of the potential:
g—1—g,orh—1—h

@ negative energy and non-square integrable
HQEV(X) = gv&v(x)y év <0 ((5V)(’Z)V) = (1/€5V7 1/&v) =00

@ they have no zeros in x € (0,7/2)

o use these seed solutions D &' {d},....dy,d' . .. d\}
dJ!,II >1
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. ; Exceptional Jacobi Polynomials
Multi-Indexed Orthogonal Polynomials eepiitne] Jaeel emeiel

Multi-Indexed Orthogonal Polynomials 2

e explicit forms of type | virtual states (h — 1 — h)
A< (S ) (cos )" 0% 8. )
E(nig.h) = P(nig,1—h), v=0,1,....[h—1],
&% agrvrlyh—v-1), & d_ef( 1,1)

e explicit forms of type Il virtual states (g — 1 — g)

W) & (sinx) 8 (cos )"l (n(): . h),
Jmig h) < Pyl —g.h), v=0.1....[g -3,
EN _4g—v—L(h+v+1), 3,1

@ They are Not symmetries of Jacobi polynomials
@ S.0dake & R. Sasaki, Phys. Lett. B702 (2011) 164-170,
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. K Exceptional Jacobi Polynomials
Multi-Indexed Orthogonal Polynomials eepiitne] Jaeel emeiel

Schematic Picture of Virtual States Deletion

A, it
— € mmm—————————
g —_— | | - >
1 Agy Ay,
T T
it I
IS SR S h
d:
! # —————————— {]
't
H M H2 HIM+N)
original dy deleted dy,ds deleted M+ N virtual states
system system system deleted system
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Multi-Indexed Orthogonal Polynomials Seiioe] el Pelmemiel

Eigenfunctions etc after Virtual States Deletion

HM M (x) = £,00(x)  (n € Zso),
HMFM () = E3M(x) (veV\D),

(b[M]( ) def W[d)dp gbdga R ggdyv ¢n](X)
W[¢d17 ¢d27 cey ¢dm](x)

M
(o™ 0™y = TT(En — E4) - hubman,

j=1
&[M]( ) def W[¢d17 ¢d27 ey &dy: (EV](X)
Y W[¢d17¢d27"'7¢d/\/1](x)

UM (x) £ U(x) — 202 log|W[Ber, By - - - B ) (¥)].

)

shape inv. exactly solvable =-  shape inv. exactly solvable
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. K Exceptional Jacobi Polynomials
Multi-Indexed Orthogonal Polynomials eepiitne] Jaeel emeiel

Multi-Indexed Orthogonal Polynomials 3

@ Multi-Indexed Orthogonal Polynomials Pp »(n):

M%) = dp.n(x: A) = (=M Nehp (3 X) P a(1(x); ),
def Po(x - AIMN
P T = N

o MMM — (g 4+ M — N, h— M+ N),
=p(n) has no node in =1 <n < 1;

Ppo(n; A) o< Zp(n; A + 9)

@ orthogonality
LWy AN
dn) —=——5Pp.m(1: A)Pp.n(0: X) = hp,nOpm
[ TS P NP (i) = b
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. - Exceptional Jacobi Polynomials
Multi-Indexed Orthogonal Polynomials eepiitne] Jaeel emeiel

Multi-Indexed Orthogonal Polynomials 4

o Explicit Forms

Pp.n(m; ) d:efW[ul,...,MM,Vl,...,Z/N,P,,](r])
1—n\(Mt+g+N 1+ 1\ (N+h+1ym
(L) (L v
— def
:D(n A) = W[/'L17'-'7/*LM7V17"'7VN]( )
1 (M+g-2)N 1+ 1\ (N+h-1)m
< (Lo L)

2

1+7,1 1—
Hj = ( 5 ) 5d'( »h), Vj:( 5 )2 gfdn(ﬁ g, h)

® Pp n(n) degree £ +n, =p(n) degree ¢;

M N
1 1
_ | I

K—Zdﬁrzdj—§M(M—1)—§N(N_1)+MN21
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Multi-Indexed Orthogonal Polynomials Sepifoe] Jeesl PelimemiEls

How it started: Xj Jacobi polynomials

e X Jacobi Hamiltonian (Gomez-Ullate et al, Quesne et al, '08)

d> g(g+1) h(h+1) )
=— —(2 h
" dx? + sin? x + cos? x (2+g+h)
8(g+h+1) 8(2g +1)(2h +1)

1+g+h+(g —h)cos2x  (14+g+h+(g —h) cos 2x)?

_ 3+g+h+(g— h)cos2x
¢o(x) = (sin x)8™*(cos x) 1+ g+h+ (g — h)cos2x
P£g+2—3/2,—h—2—1/2)(cos 2x)

e generalisation P£g+1_3/2’_h_1_1/2)(cos 2x)

wy(x; X) = (g + ¢) logsinx + (h + ¢) log cos x + log N
/j 1

AGRY, &f p(8+(=3/2=h=t=1/2) () — cos 2x
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Multi-Indexed Orthogonal Polynomials Sepifoe] Jeesl PelimemiEls

Xy Jacobi Polynomials

@ shape invariance can be verified directly
(D (x; X)) =P wy(x; A) = (O (x; A + 8))?
+ 2w A+ 8) +4(g + h+20+1)

o eigenvalues & n(g,h) =En(g+ ¢, h+ 1) =4n(n+ g+ h+20)
e eigenfunctions ¢y n(x; X) = Ye(x; X)Pyn(n; X)

def €0 (x;A+£9)

vy E(m )
Pun(ni A) = ¢, ((h+ %)&(n; X+ 8)PETTI IR )

0—3/2,h+0
+ (1 + )& (m; )9, PET AR ()
degree ¢ 4+ n polynomial

Sasaki New Orthogonal Polynomials
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Multi-Indexed Orthogonal Polynomials Sepifoe] Jeesl PelimemiEls

Xy Jacobi Polynomials 2: Fuchsian differential equation

o lowest degree Py o(n; A) o< &(m; A+ 0)
o orthogonality

w/2
/ Po(x; X)? Py n(cos 2x; X) Py, m(c0s 2x; A)dx = hy n(X)Snm
0
@ Fuchsian differential eq.
(1= n*)05Pe.n(1m: A)

+ (h—g—(g+h+2f+1)77—2(1_772)3’7@(77;)‘)

Eo(m; A)

+ Ul +g—h—1)

>5an,n(n: A)

<_2(h +3)(1 = m)O&e(m A+ )
Eo(m A)
+n(n+ g+ h+20)) Pra(m: A) = 0
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Multi-Indexed Orthogonal Polynomials Sepifoe] Jeesl PelimemiEls

Xy Jacobi Polynomials 3: Fuchsian differential equation 2

e regular singularities at ¢ roots of &(n; X), n = n;:
&((njyk)zov ./:17277[

@ in the neighbourhood of 1 = 1);:

(1—n7)
1—nf)y" —2—Ly
(=) n—nj

= 2(h+1/2)(1 =)

y + regular terms = 0

)j
@ characteristic eq.: same exponents everywhere
plp—1)—2p=0 =p=0,3
p = 0 corresponds to the polynomial solution
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Summary and Outlook

Summary and Outlook

@ Question: Why the “New Polynomials” were Not discovered
by the experts of the orthogonal polynomials?

@ Answers: ‘physical thinking' is more suitable for the problem

@ Schrodinger equation is more general than the equations
governing orthogonal polynomials

Q@ g—1—g, h— 1— hare Not the symmetries of the Jacobi
(Laguerre) polynomial equations

© they are equations for the eigenpolynomials, i e. non-square
integrable solutions are discarded

© Darboux transformations are defined most generally for the
Schrodinger equations
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Summary and Outlook

Summary and Outlook 2

@ Infinitely many new orthogonal polynomials satisfying second
order differential or difference equations are discovered.
Hopefully they will find many interesting applications.
At least, they give infinitely many examples of exactly solvable
Birth and Death Processes.

@ Various concepts and methods of QM have much wider
currency and utility in the theory of ordinary differential and
difference equations than is usually regarded.

@ Various properties of the Askey-scheme of hypergeometric
orthogonal polynomials can be understood in a unified
fashion, both of a continuous and a discrete variable.

@ Multi-variable Multi-Indexed Orthogonal polynomials are the
next challenge
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Fuchsian Differential Equations
References

Appendix

Fuchsian Differential Equations 1: overview

y"+f(x)y’—|—g(x)y:0, f(X): XEKXO +an(X_X0)n7
n=0
p S n
800 = ap s 28X —0)

n=0
Xp : regular singularity
o0
e singular solutions y; = (x — xp)” (1 + Z an(x —x0)")
n=1
@ p1, p2: characteristic exponents p(p — 1)+ ap+ =0
@ regular singularities only = Fuchsian equation

@ local theory only
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Fuchsian Differential Equations 2: examples

@ 3 regular singularities at 0, 1, co: Gauss hypergeometric eq.

x(1=x)y"+(v—=(a+8+1)x)y' —aBy =0

@ solutions around x =0: p;1 =0, ppo=1—7

e ) A (@)
y1—2F1( 7ﬁv7| ) ;) (7)n nl

yo=x"TF(a—v+1,8—7y+1;2—7lx)
hypergeometric function = globally continued

@ 4 regular singularities 0, 1, oo, t: Heun equation

@ more than 4 regular singularities: global solution virtually
unknown
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Fuchsian Differential Equations 3

@ if po — p1 = n € N: possible log terms (Frobenius)
@ if po— p1 = n € N and no log terms = apparent singularity
@ apparent singularity of Schrodinger eq. (at x = 0)

2
H=— d + g + b + regular terms
dx?
« p2 — p1
0 1 regular p=(1£V1+4a)/2
3/4 2 Painlevé case
2 3 Darboux trans.
15/4 4 7
6 5 Ho-Sasaki-Takemura

o if all extra singularities are apparent=- global solutions possible
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Parallel History

@ shape invariant potentials in discrete QM with pure imaginary
shifts; Wilson, Askey-Wilson polynomials etc ('04)

@ Heisenberg operator solutions & dynamical symmetry algebras
in discrete QM with pure imaginary shifts; Wilson,
Askey-Wilson polynomials etc ('06)

@ shape invariant potentials in discrete QM with real imaginary
shifts; (g-)Racah, (dual) (g-)Hahn, etc ('08)

@ Crum'’s theorem for discrete QM ('09)

e Xy Wilson and Askey-Wilson polynomials ('09)

e Modified Crum’s theorem (Krein-Adler transformations) for
discrete QM ('10)

o X, Wilson and Askey-Wilson polynomials derived by Darboux
transformations ('10)
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Parallel History Il

Xy (g)-Racah polynomials ('11)
Multi-indexed (q)-Racah polynomials ('12)
Multi-indexed Wilson and Askey-Wilson polynomials ('12)

duality between pseudo virtual and eigenstates & Casoratian
identities for Wilson and Askey-Wilson polynomials

non-confining potentials (discrete analogues of Morse, Eckart
potentials) ('14)
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