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After decades of search,
the Higgs particle was
discovered at CERN, in a
reaction like this

In a detector like this

Photo: Pricolet
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Francois Englert Peter W. Higgs

Higgs & Englert got the Physics
Nobel Prize in 2013, for
postulating the underlying
Higgs field, in 1964.



The Higgs field fills the vacuum.
/_\/—\_/’\/—\_/\//—\ e

On microscopic scale,
it gives mass to elementary particles: W, Z, quarks.

On macroscopic scale,
it flows like a superfluid, due to phase variations.
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On cosmic scale,
it makes the universe a superfluid.



Great puzzles of our time:
e Dark energy
e Dark matter

Theme of this talk:

* Dark energy = energy of Higgs superfluid
e Dark matter = density variation of superfluid



Expanding universe

* The more distant the galaxy, the faster it moves away from us.
* Fabric of space-time expands, like balloon being blown up.
 Extrapolate backwards to “big bang”

Edwin Hubble
1889 - 1953

Hubble’s law: Velocity proportional to distance
1 da 1
H = — = 9
a dt  15x10° yrs

Hubble’s parameter:



Dark energy — deviation from Hubble’s law
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Dark matter

Velocity curve of Andromeda

Velocity

(Rubin & Ford, 1970)
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Collision of two galaxy clusters (the “bullet cluster” 2004)

Hot gases (x-rays)
Galaxies (visible)

Dark-matter halo
(from gravitational lensing)



Dark energy & dark matter
constitute 96% of the energy in the universe.

74% Dark Energy




Superfluidity

Quantum phase coherence over macroscopic distances

Order parameter: complex scalar field

¢ = Fe®

L.D. Landau

Superfluid velocity = kVo

V.L. Ginsburg |,



——

Liquid helium below critical temperature 2.18 K becomes
superfluid. It can climb over walls of containers.
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Superconductivity =
superfluidity arising from electron pairs in a metal

Inside a superconductor, there is a
condensate of electron pairs with
definite guantum phase.

Phase difference between two
superconductors causes a supercurrent
to flow from one to the other.

Josephson junction
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The Higgs field

® is a complex scalar field that permeates all space,

e serving as order parameter for superfluidity,

* making the entire universe a superfluid.

It is a quantum field

e with momentum scale set by a cutoff momentum.

* It undergoes renormalization under a scale transformation.
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Renormalization

As scale changes, one must adjust couplings so as
to preserve the theory.

* The system’s appearance changes,
e But its identity is preserved.

Freeman J. Dyson
1923-

Cutoff A,

Effective cutoff A

Kenneth G. Wilson
Momentum spectrum 1936 - 2013
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Scalar Field

Lagrangian density :

£=>(29) -V (9)

Potential :

V(¢)=40"+,¢" +A¢° +---

Equation of motion :

0°p+Vg=0

High momentum cutoff = A

Length scale = —
A

e Renormalization makes the
couplings, and thus V, dependent on
the length scale.

* This dependence is especially
important when the scale changes
rapidly, as during the big bang.

15




RG (renormalization group) trajectory

* The potential V changes as scale changes.

* The Lagrangian traces out a trajectory in the space of all possible Lagrangians.

* Fixed points correspond to scale-invariant systems.

UV trajectory

Fixed point

A=

e |
= =~ IR trajectory

—» Coarse-graining direction (A decreases)

UV trajectory: Asymptotic freedom
IR trajectory: Triviality
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The Creation

At the bigbang A = « .
There was no interaction.
Universe was at the Gaussian fixed point @

It emerges along some direction in the space of Lagrangians, on an RG trajectory.
Direction <--> form of the potential V.

Non-trivial
direction

Trivial

direction. __ Outgoing trajectory --- Asymptotic freedom

Ingoing trajectory --- Triviality (free field)
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Halpern-Huang potential

the only asymptotically
free scalar potential

e Kummer function
(non-polynomial)

* Exponential behavior
at large fields

Potential

18



Cosmological equations

R, — %gWR =8xGT,, (Einstein's equation)

7,

0°¢p+V ¢ =0 (Scalar field equation)

Robertson-Walker metric (spatial homogeneity)
Gravity scale = a (radius of universe)

Scalar field scale = A (cutoff momentum)
Since there can be only one scale in the universe,

A:E
d

Dynamical feedback:

Gravity provides cutoff to scalar field,
which generates gravitational field.
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The big bang

Initial-value problem

AdrG =c=h =1

a=Ha
———¢5 a oV
- "3a T—
oV
¢——3H¢—w

X =H?

g

k = curvature parameter =0, +1,-1

~ Trace anomaly

Constraint equation

X =0 is a constraint on initial values.

Equations guarantee X = 0.
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T T > Time
The big bang Model starts here
0(1043s)

* Initial condition: Vacuum field already present.

)

e Universe could have been created in hot “normal phase”,
then make phase transition to “superfluid phase”.
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Numerical solution

Dark energy without
“fine-tuning” problem
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d L /Z (Mpc)

Comparison of power-law prediction on galactic
redshift with observations

] I 1 ] ] I
0 Gamma-ray bursts
*  Supernovas

Hubhble's |aw

1 L 1 | 1 L

4 3 L] ¥

3
Redshift parameter z --> earlier epoch
d , = luminosity distance

Different exponents p only affects vertical displacement,
such as A and B.

Horizontal line corresponds to Hubble’s law.
Deviation indicates accelerated expansion (dark energy).

Crossover transition between two different phases B -> A (?)
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Generalization to complex scalar field

New physics:
. Superfluidity
e Quantum turbulence

1. Matter creation:
Must create enough matter for subsequent nucleogenesis before
universe gets too large.

2. Decoupling of matter scale and Planck scale:
Matter interactions governed by nuclear scale of 1 GeV.
But equations have built-in Planck scale of 102 GeV.
These scales should decouple from each other.
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Quantized vortex in complex scalar field

vortex

®core |
¢ = Fe'°
)7 xkVo = superfluid velocity
§ds - Vo = 27N
D C

|
|
|
|
F(r) |
|
|
|
|




F(r)

» Replace vortex core by tube.

e Scalar field remains uniform outside.

e Can still use RW metric,
* but space is multiply-connected.

A “worm-hole” cosmos

The vortex-tube system
represent emergent
degrees of freedom.
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Vortex dynamics

Elementary structure is vortex ring Self-induced vortex motion

N\

/

V=—-—2-In |
4R Ro The smaller the radius of curvature R,
the faster it moves normal to R.
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Vortex reconnection

e The cusps spring away
from each other at “infinite”
speed (due to small radii),
creating two jets of energy.

e Efficient way of converting
potential energy to kinetic
energy in very short time.
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Magnetic reconnections in sun’s corona
Responsible for solar flares
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Simulation of quantum turbulence

Creation of vortex tangle in presence of “counterflow” .
K.W. Schwarz, Phys. Rev. B 38, 2398 (1988).

i@

L\

]

|/

bl
\
—

VA

)

/

) Number of reconnections:
0 3
; 18 844
Ak
1128 14781

Fractal dimension = 1.6
D. Kivotides, C.F. Barenghi, and D.C. Samuels. Phys. Rev. Lett. 87, 155301 (2001).



Cosmology with quantum turbulence

* Scalar field has uniform modulus F.
* Phase dynamics manifested via vortex tangle /.
* Matter created in vortex tangle.

Variables

a = Radius of universe

F = Modulus of scalar field
¢ =Vortex tube density

p = Matter density

Equations of motion

a from Einstein's equation with RW metric.
Source of gravity: ;"= T + T +T*

F from field equation.

¢ from Vinen's equation.

p from energy-momentum conservation T/i" =O0.



Vinen’s equation for quantum turbulence

¢ = vortex tube density (length per unit spatial volume)

¢ = Ar? — B3

G rowth Decay

 VVinen (1957)
e Schwarz (1988)
* Verified by experiments in superfluid helium.



Cosmological equations

4rG=c=h=1)

E, =a’c,/ (Total vortex energy)
E.=a’p (Total matter energy)

(E,+E,)

Essentially constant

2 3/2
EV + yEv

Co dF2 \ * Rapid change

(

e Av.overt
* of order 1018

\'

S1 dt /

2 k 2 (2
H +——§<F +V +

1+go

E, +LE,) =0

ad

Decouples into two sets because

old: Generalized:
dH _
H=K _p, 2V dt
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Matter creation

* \Vortex tangle (quantum turbulence) grows and eventually
decays.

* All the matter needed for galaxy formation was created in
the tangle.

* This picture replaces the usual “inflation”.

After decay of quantum turbulence, the standard hot big
bang theory takes over, but the universe remains a
superfluid.
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Era of
guantum

|
|
|
turbulence |

| T
|

E matter |

EO _______ | — — — ) . 0 .

| Cosmic inflation:
| * Radius increases by factor 10 27
| *in 10 3%seconds.
| e Matter created = 10 22 sun masses
| r ° Eventually form galaxies outside of vortex cores.

0 Inflation 1

€ra
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Big 1026 s 10° yrs

bang > Time
Quantum
turbulence CMB
formed
Inflation

Standard hot big bang theory
Plus superfluidity

Validity of this model
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Vortex cores have expanded with universe

Then Now

102° sec 1.4 billion yrs

Dot=galaxy
H | |
-10

10 cm 107 light yrs
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Legacies in the post-inflation universe

Remnant vortex tubes with empty cores grow into cosmic voids in
galactic distribution.

The large-scale structure of the Universe from the CfA2 galaxy survey.



107 light years

The observed “stick man”

Simulated with
3 vortex tubes
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Reconnection of huge vortex tubes
in the later universe will be rare but spectacular.

Gamma ray burst

* A few events per galaxy per million yrs

* Lasting ms to minutes

e Energy output in 1 s = Sun’s output in entire life
(billions of years).

Jet of matter 27 light years long

HASA/HUEBELE HERITAGE
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“Hair” on black hole

Artist’s conception:
Rotating object in superfluid
induces vortex filaments.
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Observed:
“Non-thermal filaments" near
center of Milky Way.
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Dark matter

Galaxy

Dark matter
halo

Scalar field Scalar field

Vacuum

Halo

x @ x

Galaxy

Vacuum field gives dark energy Deviation from vacuum value, due to
presence of galaxy, represents dark matter
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Computer simulations (2D) based on phenomenological scalar field

* Nonlinear Klein-Gordon equation in curved space, with galaxy as external source.
e phi-4 scalar potential.

Response of superfluid to galaxy being dragged through it.

3

Galaxy Transient waves

Dark-matter halo
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Two galaxies colliding headon and passing through each other
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Two galaxies passing each other
Superfluid sheared into rotation by creation of vortices (black dots).
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Quantized vortices generated by a rotating galaxy at center

Scalar-field modulus Scalar-field phase
The vortices are Dark lines are “strings”
arranged in rings. across which phase

jumps by 2 pi.
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Institute of Advanced Studies, Nanyang Technological University, Singapore.
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