IX Maxwell Equations and Electromagnetic waves
1. Induced magnetic field
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Ampere’s law when applied to a charging capacitor generates an inconsistency.
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The only way out of this inconsistency is to introduce another source of magnetic field, induced through changing electric field.
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This is a very symmetric counterpart of Faraday’s law, where changing magnetic field induced electric field. Actually the form of the equations is symmetric:
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The induced fields usually follow a circular form, instead of those emanated from a source, like electric charge.  
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2. Maxwell Equations

Put all the fundamental laws together. We have the four fundamental equations of electromagnetism, called Maxwell's equations:
	Maxwell's Equationsa 

	Gauss' law for electricity
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	Relates net electric flux to net enclosed electric charge  

	Gauss' law for magnetism
	[image: image9.png]B.d4a=0



  
	Relates net magnetic flux to net enclosed magnetic charge  

	Faraday's law
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	Relates induced electric field to changing magnetic flux  

	Ampere–Maxwell law
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	Relates induced magnetic field to changing electric flux and to current  


3. Electromagnetic wave
Now that changing electric (magnetic) field could generate magnetic (electric) field in its vicinity, it could provide a mechanism to propagate a changing electromagnetic field one step at a time and on to faraway places. 

Consider the following example:
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The charge sheet at x=0 suddenly starts to move at t=0, suddenly generated a current and hence a magnetic field in the neighborhood. But a changing magnetic field will also generate an electric field. Even better this just generated electric field in turn induced magnetic field. So E and B actually couple together and generate each other. 

The solution is that the area with non zero constant E and B will propagate with a constant speed v:
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Fig. 18-4. (a) The magnitude of B
{or E) as a function of x at the time t after
the charge sheet is set in motion. (b) The
fields for a charge sheet set in motion,
toward negative y att = T. {c) The sum
of (a) and (b).
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Applying Faraday’s Law and Maxwell’s Law to the above diagrams, we can show that 
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Therefore we can conclude 
[image: image17.wmf]1

0

0

2

=

e

m

v

 and 
[image: image18.wmf]8

0

0

10

3

1

´

»

=

e

m

v

m which is equal to the speed of light c. It is this identity that made Maxwell to conjecture light is a form of electromagnetic wave!!
There are some properties about EM wave we can draw from the above simple example:

1. EM wave is the propagation of disturbance in electric field and magnetic field, both field are necessary at the same time. Their magnitudes are proportional to each other:
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2. The electric and magnetic fields [image: image20.png]


and [image: image21.png]


are always perpendicular to the direction of travel of the wave. Thus, the wave is a transverse wave.
3. The electric field is always perpendicular to the magnetic field.
It can also be shown that the electromagnetic fields satisfy wave equation, just like string wave, sound wave etc. You can find the derivation in the appendix. The equation allows sinusoidal wave: the electric and magnetic fields as sinusoidal functions of position x (along the path of the wave) and time t: 
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	(34-1) 
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	(34-2) 


in which Em and Bm are the amplitudes of the fields and w and k are the angular frequency and angular wave number of the wave, respectively. From these equations, we note that not only do the two fields form the electromagnetic wave but each forms its own wave. Its form is shown in the following graph.
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Here we also show in the following graph the behavior of fields at point P as a function of time.
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4. Generation of EM waves
The following graphs show the generation of sinusoidal EM waves. At its heart is an LC oscillator, which establishes an angular frequency ω (= 1/[image: image26.png]VIC



). Charges and currents in this circuit vary sinusoidally at this frequency. An external source—possibly an ac generator—must be included to supply energy to compensate both for thermal losses in the circuit and for energy carried away by the radiated EM wave. 

The LC oscillator is coupled by a transformer and a transmission line to an antenna, which consists essentially of two thin, solid, conducting rods. Through this coupling, the sinusoidally varying current in the oscillator causes charge to oscillate sinusoidally along the rods of the antenna at the angular frequency w of the LC oscillator. The current in the rods associated with this movement of charge also varies sinusoidally, in magnitude and direction, at angular frequency w. The antenna has the effect of an electric dipole whose electric dipole moment varies sinusoidally in magnitude and direction along the length of the antenna. An EM wave is then generated by the changing fields produced by the changing dipole. 
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5. Energy propagation
The rate of energy transport per unit area in such a wave is described by a vector [image: image30.png]


, called the Poynting vector after physicist John Henry Poynting (1852–1914), who first discussed its properties. [image: image31.png]


is defined as 
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	(34-19) 


Its magnitude S is related to the rate at which energy is transported by a wave across a unit area at any instant (inst): 

	[image: image33.png]ower
energy / time ) = (R
prea NN
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From this we can see that the SI unit for [image: image34.png]


is the watt per square meter (W/m2).
Appendix: Wave Equation
Equation 34-4 and the Induced Electric Field 

The dashed rectangle of dimensions dx and h in Fig. 34-6 is fixed at point P on the x axis and in the xy plane (it is shown on the right in Fig. 34-5b ). As the electromagnetic wave moves rightward past the rectangle, the magnetic flux B through the rectangle changes and—according to Faraday's law of induction—induced electric fields appear throughout the region of the rectangle. We take [image: image35.png]


and [image: image36.png]


+ d[image: image37.png]


 to be the induced fields along the two long sides of the rectangle. These induced electric fields are, in fact, the electric component of the electromagnetic wave. 
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	Fig. 34-6  As the electromagnetic wave travels rightward past point P in Fig. 34-5 , the sinusoidal variation of the magnetic field [image: image39.png]


through a rectangle centered at P induces electric fields along the rectangle. At the instant shown, [image: image40.png]


is decreasing in magnitude and the induced electric field is therefore greater in magnitude on the right side of the rectangle than on the left.
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Let us consider these fields at the instant when the magnetic wave component passing through the rectangle is the small section marked with red in Fig. 34-5b . Just then, the magnetic field through the rectangle points in the positive z direction and is decreasing in magnitude (the magnitude was greater just before the red section arrived). Because the magnetic field is decreasing, the magnetic flux B through the rectangle is also decreasing. According to Faraday's law, this change in flux is opposed by induced electric fields, which produce a magnetic field [image: image42.png]


in the positive z direction.
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According to Lenz's law, this in turn means that if we imagine the boundary of the rectangle to be a conducting loop, a counterclockwise induced current would have to appear in it. There is, of course, no conducting loop; but this analysis shows that the induced electric field vectors [image: image44.png]


and [image: image45.png]


+ d[image: image46.png]


 are indeed oriented as shown in Fig. 34-6 , with the magnitude of [image: image47.png]


+ d[image: image48.png]


 greater than that of [image: image49.png]


. Otherwise, the net induced electric field would not act counterclockwise around the rectangle.
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Let us now apply Faraday's law of induction, 
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	(34-6) 


counterclockwise around the rectangle of Fig. 34-6 . There is no contribution to the integral from the top or bottom of the rectangle because [image: image52.png]


and d[image: image53.png]


 are perpendicular there. The integral then has the value 
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	(34-7) 


The flux B through this rectangle is 
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	(34-8) 


where B is the magnitude of [image: image56.png]


within the rectangle and h dx is the area of the rectangle. Differentiating Eq. 34-8 with respect to t gives 
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If we substitute Eqs. 34-7 and 34-9 into Eq. 34-6 , we find 
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or 
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	(34-10) 


Actually, both B and E are functions of two variables, x and t, as Eqs. 34-1 and 34-2 imply. However, in evaluating dE/dx, we must assume that t is constant because Fig. 34-6 is an “instantaneous snapshot.” Also, in evaluating dB/dt we must assume that x is constant because we are dealing with the time rate of change of B at a particular place, the point P in Fig. 34-5b . The derivatives under these circumstances are partial derivatives, and Eq. 34-10 must be written 
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	(34-11) 


The minus sign in this equation is appropriate and necessary because, although E is increasing with x at the site of the rectangle in Fig. 34-6 , B is decreasing with t.
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From Eq. 34-1 we have 
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and from Eq. 34-2 
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Then Eq. 34-11 reduces to 
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	(34-12) 


The ratio /k for a traveling wave is its speed, which we are calling c. Equation 34-12 then becomes 
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	(34-13) 


which is just Eq. 34-4 .

Equation 34-3 and the Induced Magnetic Field 

Figure 34-7 shows another dashed rectangle at point P of Fig. 34-5 ; this one is in the xz plane. As the electromagnetic wave moves rightward past this new rectangle, the electric flux E through the rectangle changes and—according to Maxwell's law of induction—induced magnetic fields appear throughout the region of the rectangle. These induced magnetic fields are, in fact, the magnetic component of the electromagnetic wave. 

	[image: image66.jpg]B+dB




	Fig. 34-7  The sinusoidal variation of the electric field through this rectangle, located (but not shown) at point P in Fig. 34-5 , induces magnetic fields along the rectangle. The instant shown is that of Fig. 34-6 : [image: image67.png]


is decreasing in magnitude and the induced magnetic field is greater in magnitude on the right side of the rectangle than on the left.
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We see from Fig. 34-5 that at the instant chosen for the magnetic field in Fig. 34-6 , the electric field through the rectangle of Fig. 34-7 is directed as shown. Recall that at the chosen instant, the magnetic field in Fig. 34-6 is decreasing. Because the two fields are in phase, the electric field in Fig. 34-7 must also be decreasing, and so must the electric flux E through the rectangle. By applying the same reasoning we applied to Fig. 34-6 , we see that the changing flux E will induce a magnetic field with vectors [image: image69.png]


and [image: image70.png]


+ d[image: image71.png]


 oriented as shown in Fig. 34-7 , where [image: image72.png]


+ d[image: image73.png]


 is greater than [image: image74.png]


.
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Let us apply Maxwell's law of induction, 
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by proceeding counterclockwise around the dashed rectangle of Fig. 34-7 . Only the long sides of the rectangle contribute to the integral, whose value is 
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The flux E through the rectangle is 
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	(34-16) 


where E is the average magnitude of [image: image79.png]


within the rectangle. Differentiating Eq. 34-16 with respect to t gives 
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If we substitute this and Eq. 34-15 into Eq. 34-14 , we find 
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or, changing to partial-derivative notation as we did before (Eq. 34-11 ), 
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	(34-17) 


Again, the minus sign in this equation is necessary because, although B is increasing with x at point P in the rectangle in Fig. 34-7 , E is decreasing with t.
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Evaluating Eq. 34-17 by using Eqs. 34-1 and 34-2 leads to 
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which we can write as 
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Combining this with Eq. 34-13 leads at once to 
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	(34-18) 


which is exactly Eq. 34-3 .

Take partial derivative of Eq. 34-11 with respect to x and partial derivative of Eq. 34-17 with respect to t, and then equate the right hand side. The equation we get is then:
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The following equation is also true:
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These are the wave equations.
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