

Sections
1．反射（reflection）與析射 （refraction）
2．干涉（interference）
3．獍射（diffraction）

13－1 Reflection and Refraction與析射）
$\theta_{1}^{\prime}=\theta_{1} \quad$（reflection）
$n_{2} \sin \theta_{2}=n_{1} \sin \theta_{1} \quad$（refraction）

折射率

－The Index of Refraction －The Stealth Aircraft F－117A

Chromatic Dispersion - prisurt

 gratings

Raintions

13-2 Interference - (干涪)

What produces the tlue-green of a Morpho's wing? How do colorstifting inks shift colors? airturush

Huygens' principle

All points on a wavefront serve as point sources of spherical secondary wavelets. After a time t, the new position of the wavefront will be that of a surface tangent to these secondary wavelets.

Law of Refraction from Huygens' principole

(a)

(b)

Fig. 35-3
(c)

$\frac{\sin \theta_{1}}{\sin \theta_{2}}=\frac{c / n_{1}}{c / n_{2}}=\frac{n_{2}}{n_{1}}$
Law of Refraction: $n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$

Phase Difference, Wavelength and Index of Refraction

Wavelength and Index of Refraction

$$
\begin{gathered}
\frac{\lambda_{n}}{\lambda}=\frac{v}{c} \rightarrow \lambda_{n}=\lambda \frac{v}{c} \rightarrow \lambda_{n}=\frac{\lambda}{n} \\
f_{n}=\frac{v}{\lambda_{n}}=\frac{c / n}{\lambda / n}=\frac{c}{\lambda}=f
\end{gathered}
$$

The frequency of light in a medium is the same as it is in vacuum

Phase Difference

Since wavelengths in n 1 and n 2 are different, the two beams may no longer be in phase
Fig. 35-4 $\mid \leftarrow L \rightarrow$
Number of wavelengths in $n_{1}: N_{1}=\frac{L}{\lambda_{n 1}}=\frac{L}{\lambda / n_{1}}=\frac{L n_{1}}{\lambda}$
Number of wavelengths in $n_{2}: N_{2}=\frac{L}{\lambda_{n 2}}=\frac{L}{\lambda / n_{2}}=\frac{L n_{2}}{\lambda}$
Assuming $n_{2}>n_{1}: N_{2}-N_{1}=\frac{L n_{2}}{\lambda}-\frac{L n_{2}}{\lambda}=\frac{L}{\lambda}\left(n_{2}-n_{1}\right)$
$N_{2}-N_{1}=1 / 2$ wavelength \rightarrow destructive interference

Ex.13-1 35-1

wavelength 550.0 nm
$\mathrm{n}_{2}=1.600$ and
$\mathrm{L}=2.600 \mathrm{~m}$

$$
\begin{aligned}
N_{2}-N_{1} & =\frac{L}{\lambda}\left(n_{2}-n_{1}\right) \\
& =\frac{2.600 \times 10^{-6} \mathrm{~m}}{5.500 \times 10^{-7} \mathrm{~m}}(1.600-1.000) \\
& =2.84 .
\end{aligned}
$$

phase difference $=17.8 \mathrm{rad} \approx 1020^{\circ}$
effective phase difference $=0.84$ wavelength

Young's Experiment

$$
d \sin \theta=m \lambda, \quad \text { for } m=0,1,2, \ldots \quad \text { (maxima-bright fringes). }
$$

$$
d \sin \theta=\left(m+\frac{1}{2}\right) \lambda, \quad \text { for } m=0,1,2, \ldots \quad \text { (minima-dark fringes). }
$$

Coherence

Two sources to produce an interference that is stable over time, if their light has a phase relationship that does not change with time: $E(t)=E_{0} \cos (\omega t+\phi)$

Coherent sources: Phase ϕ must be well defined and constant. When waves from coherent sources meet, stable interference can occur - laser light (produced by cooperative behavior of atoms)

Incoherent sources: ϕ jitters randomly in time, no stable interference occurs - sunlight

(a)

Phasor diagram

Fig. 35-13 (b)
$E(t)=E_{0} \sin \omega t+E_{0} \sin (\omega t+\phi)=?$
$E=2\left(E_{0} \cos \beta\right)=2 E_{0} \cos \frac{1}{2} \phi$
$E^{2}=4 E_{0}^{2} \cos ^{2} \frac{1}{2} \phi$
$\frac{I}{I_{0}}=\frac{E^{2}}{E_{0}^{2}}=4 \cos ^{2} \frac{1}{2} \phi \rightarrow I=4 I_{0} \cos ^{2} \frac{1}{2} \phi$
Eq. 35-22
$\frac{\binom{\text { phase }}{\text { difference }}}{2 \pi}=\frac{\binom{\text { path length }}{\text { difference }}}{\lambda}$
$\binom{$ phase }{ difference }$=\frac{2 \pi}{\lambda}\binom{$ path length }{ difference }
$\phi=\frac{2 \pi}{\lambda}(d \sin \theta)$
Eq. 35-23

Intensity in Double-Slit Interference

maxima when: $\frac{1}{2} \phi=m \pi$ for $m=0,1,2, \ldots \rightarrow \phi=2 m \pi=\frac{2 \pi d}{\lambda} \sin \theta$ $\rightarrow d \sin \theta=m \lambda$ for $m=0,1,2, \ldots \quad$ (maxima) minima when: $\frac{1}{2} \phi=\left(m+\frac{1}{2}\right) \pi \rightarrow d \sin \theta=\left(m+\frac{1}{2}\right) \lambda$ for $m=0,1,2, \ldots \quad$ (minima)

Intensity in Double-Slit Interference

Ex.13-2 35-2

$$
\begin{array}{rlrl}
N_{2} & -N_{1}=\frac{L}{\lambda}\left(n_{2}-n_{1}\right) & & \text { wavelength } 600 \mathrm{~nm} \\
L & =\frac{\lambda\left(N_{2}-N_{1}\right)}{n_{2}-n_{1}}=\frac{\left(600 \times 10^{-9} \mathrm{~m}\right)(1)}{1.50-1.00} & \mathrm{n}_{2}=1.5 \text { and } \\
& =1.2 \times 10^{-6} \mathrm{~m} . & \mathrm{m}=1 \rightarrow \mathrm{~m}=0
\end{array}
$$

Interference from Thin Films

Reflection Phase Shifts

Reflection Phase Shift 0
0.5 wavelength

Phase Difference in Thin-Film Interference

Three effects can contribute to the phase difference between r_{1} and r_{2}.

1. Differences in reflection conditions
2. Difference in path length traveled.
3. Differences in the media in which the waves travel. One must use the wavelength in each medium (λ / n), to calculate the phase.

Equations for Thin-Film Interference

$1 / 2$ wavelength phase difference to difference in reflection of r_{1} and r_{2}

$$
2 L=\frac{\text { odd number }}{2} \times \text { wavelength }=\frac{\text { odd number }}{2} \times \lambda_{n 2}(\text { in-phase waves })
$$

$$
2 L=\text { integer } \times \text { wavelength }=\text { integer } \times \lambda_{n 2} \quad(\text { out-of-phase waves })
$$

$$
\lambda_{n 2}=\frac{\lambda}{n_{2}} 2 L=\left(m+\frac{1}{2}\right) \frac{\lambda}{n_{2}} \text { for } m=0,1,2, \ldots \text { (maxima-- bright film in air) } 22=m \frac{\lambda}{n_{2}} \text { for } m=0,1,2, \ldots \text { (minima-- dark film in air) }
$$

Color Shifting by Paper Currencies, paints

 and Morpho Butterflies
looking directly down : red or red-yellow tilting : green

$$
\begin{aligned}
& \text { 大 } \\
& \text { 藍 } \\
& \text { 魔 } \\
& \text { 爾 } \\
& \text { 蝴 } \\
& \text { 蝶 }
\end{aligned}
$$

隻㹫途干涉之强度

Ex.13-3 35-3 Brightest reflected

 light from a water film
thickness 320 nm

$$
n_{2}=1.33
$$

$2 L=\left(m+\frac{1}{2}\right) \frac{\lambda}{n_{2}}$.
$\lambda=\frac{2 n_{2} L}{m+\frac{1}{2}}=\frac{(2)(1.33)(320 \mathrm{~nm})}{m+\frac{1}{2}}=\frac{851 \mathrm{~nm}}{m+\frac{1}{2}}$.
$\mathrm{m}=0,1700 \mathrm{~nm}$, infrared
$m=1,567 \mathrm{~nm}$, yellow-green
$\mathrm{m}=2$, 340 nm , ultraviolet

Ex.13-4 35-4 anti-reflection

 coating
$2 L=\frac{\text { odd number }}{2} \times \frac{\lambda}{n_{2}}$.
$L=\left(m+\frac{1}{2}\right) \frac{\lambda}{2 n_{2}}, \quad$ for $m=0,1,2, \ldots$
$L=\frac{\lambda}{4 n_{2}}=\frac{550 \mathrm{~nm}}{(4)(1.38)}=99.6 \mathrm{~nm}$.

Ex. 13-5 35-5 thin air wedge:

$$
2 L=\text { integer } \times \frac{\lambda}{n_{2}}, \quad 2 L=m \frac{\lambda}{n_{2}}, \quad \text { for } m=0,1,2, \ldots
$$

$$
L_{L}=\left(m_{L}\right) \frac{\lambda}{2 n_{2}}, \quad L_{R}=\left(m_{L}+5\right) \frac{\lambda}{2 n_{2}}
$$

$$
\begin{aligned}
\Delta L=L_{R}-L_{L} & =\frac{\left(m_{L}+5\right) \lambda}{2 n_{2}}-\frac{m_{L} \lambda}{2 n_{2}}=\frac{5}{2} \frac{\lambda}{n_{2}} \\
& =1.58 \times 10^{-6} \mathrm{~m} .
\end{aligned}
$$

Michelson Interferometer

$$
\begin{array}{cl}
\Delta L_{m}=2 L & \text { slab of material of thickness } \\
& \left.L \text { placed in front of } M_{1}\right)
\end{array}
$$

Fig. 35-23

Determining Material thickness L

$$
\begin{aligned}
N_{m}=\frac{2 L}{\lambda_{m}}=\frac{2 L n}{\lambda} & \text { (number of wavelengths } \\
& \text { in slab of material) }
\end{aligned}
$$

$$
\begin{array}{r}
N_{a}=\frac{2 L}{\lambda} \quad \text { (number of wavelengths } \\
\\
\text { in same thickness of air) }
\end{array}
$$

$$
\begin{aligned}
N_{m}-N_{a}=\frac{2 L n}{\lambda}-\frac{2 L}{\lambda}=\frac{2 L}{\lambda}(\mathrm{n}-1) & \text { (difference in wavelengths } \\
& \text { for paths with and without } \\
& \text { thin slab) }
\end{aligned}
$$

Problem 35-81

In Fig. 35-49, an airtight chamber of length $d=5.0 \mathrm{~cm}$ is placed in one of the arms of a Michelson interferometer. (The glass window on each end of the chamber has negligible thickness.) Light of wavelength $\lambda=500 \mathrm{~nm}$ is used.
Evacuating the air from the chamber causes a shift of 60 bright fringes. From these data and to six significant figures, find the index of refraction of air at atmospheric pressure.

FIG. 35-49 Problem 81.

Solution to Problem 35-81

φ_{1} the phase difference with air ; 2 : vacuum

$$
\begin{aligned}
& \phi_{1}-\phi_{2}=2 L \left\lvert\, 2 \pi i^{n}-\frac{2 \pi}{\lambda} \xlongequal[2]{2} \frac{4 \pi n-1 g}{\lambda}\right. \\
& \frac{4 \pi-19}{\lambda}=2 N \pi \quad N \text { fringes } \\
& n=1+\frac{N \lambda}{2 L}=1+\frac{60500 \times 10^{-9} \mathrm{mh}}{250 \times 10^{-2} \mathrm{~m} \boldsymbol{h}}=1.00030 .
\end{aligned}
$$

13-3 Diffraction and the Wave Theory of Light

Diffraction Pattern from a single narrow slit.

Fresnel Bright Spot.

These patterns cannot be explained using geometrical optics (Ch. 34)!

The Jresnel Bright Spot (1819)

- Newton
- corpuscle
- Doisson
- Fresnel
nrave

Diffraction ty a single slit

$a \sin \theta=m \lambda$,
for $m=1,2,3, \ldots$.
(minima-dark fringes).

俊狭綎與草狭縋
－Doukte－stit diffraction（with
 interference）
－Single－strit diffraction

Diffraction by a Single Slit: Locating the first minimum

$$
\frac{a}{2} \sin \theta=\frac{\lambda}{2} \rightarrow a \sin \theta=\lambda
$$

(first minimum)

Diffraction by a Single Slit:

 Locating the Minima
wave

$$
\frac{a}{4} \sin \theta=\frac{\lambda}{2} \xrightarrow{(a)} a \sin \theta=2 \lambda
$$

$$
a \sin \theta=m \lambda, \text { for } m=1,2,3 \ldots \text { (minima-dark fringes) }
$$

Ex.13-6 36-1 Slit width

(a) For what value of a will the first minimum for red light of wavelength $\lambda=650 \mathrm{~nm}$ appear at $\theta=15^{\circ}$?

$$
\begin{aligned}
a & =\frac{m \lambda}{\sin \theta}=\frac{(1)(650 \mathrm{~nm})}{\sin 15^{\circ}} \\
& =2511 \mathrm{~nm} \approx 2.5 \mu \mathrm{~m} .
\end{aligned}
$$

(b) What is the wavelength λ^{\prime} of the light whose first side diffraction maximum is at 15°, thus coinciding with the first minimum for the red light?
$a \sin \theta=1.5 \lambda^{\prime}$.

$$
\begin{aligned}
\lambda^{\prime} & =\frac{a \sin \theta}{1.5}=\frac{(2511 \mathrm{~nm})\left(\sin 15^{\circ}\right)}{1.5} \\
& =430 \mathrm{~nm}
\end{aligned}
$$

Intensity in Single-Slit Diffraction, Qualitatively

$$
\binom{\text { phase }}{\text { difference }}=\left(\frac{2 \pi}{\lambda}\right)\binom{\text { path length }}{\text { difference }} \quad \Delta \phi=\left(\frac{2 \pi}{\lambda}\right)(\Delta x \sin \theta)
$$

Fig. 36-7

Intensity and path length difference

$$
\begin{gathered}
\sin \frac{1}{2} \phi=\frac{E_{\theta}}{2 R} \quad \phi=\frac{E_{m}}{R} \\
E_{\theta}=\frac{E_{m}}{\frac{1}{2} \phi} \sin \frac{1}{2} \phi
\end{gathered}
$$

$$
\frac{I(\theta)}{I_{m}}=\frac{E_{\theta}^{2}}{E_{m}^{2}} \rightarrow I(\theta)=I_{m}\left(\frac{\sin \alpha}{\alpha}\right)^{2}
$$

Fig. 36-9

$$
\phi=\left(\frac{2 \pi}{\lambda}\right)(a \sin \theta)
$$

凹

Intensity in Single-Slit Diffraction, Quantitatively

(a)

(b)

Fig. 36-8 $\begin{gathered}\theta \text { (degrees) }\end{gathered}$

Here we will show that the intensity at the screen due to a single slit is:

$$
\begin{aligned}
& I(\theta)=I_{m}\left(\frac{\sin \alpha}{\alpha}\right)^{2} \\
& \text { here } \alpha=\frac{1}{2} \phi=\frac{\pi a}{\lambda} \sin \theta
\end{aligned}
$$

In Eq. 36-5, minima occur when:
$\alpha=m \pi, \quad$ for $m=1,2,3 \ldots$
If we put this into Eq. 36-6 we find:
$m \pi=\frac{\pi a}{\lambda} \sin \theta, \quad$ for $m=1,2,3 \ldots$
or $\quad a \sin \theta=m \lambda, \quad$ for $m=1,2,3 \ldots$
(minima-dark fringes)

Ex.13-7 36-2

Find the intensities of the first three secondary maxima (side maxima) in the single-slit diffraction pattern of Fig. 36-1, measured as a percentage of the intensity of the central maximum.

$$
\alpha=\left(m+\frac{1}{2}\right) \pi, \quad m=1,2,3, \cdots
$$

$$
\frac{I}{I_{m}}=\left(\frac{\sin \alpha}{\alpha}\right)^{2}=\left(\frac{\sin \left(m+\frac{1}{2}\right) \pi}{\left(m+\frac{1}{2}\right) \pi}\right)^{2}, \text { for } m=1,2,3, \ldots
$$

$$
\frac{I_{1}}{I_{m}}=\left(\frac{\sin \left(1+\frac{1}{2}\right) \pi}{\left(1+\frac{1}{2}\right) \pi}\right)^{2}=\left(\frac{\sin 1.5 \pi}{1.5 \pi}\right)^{2}
$$

$$
=4.50 \times 10^{-2} \approx 4.5 \%
$$

$$
\frac{I_{2}}{I_{m}}=1.6 \% \quad \text { and } \quad \frac{I_{3}}{I_{m}}=0.83 \%
$$

Diffraction by a Circular Aperture

Distant point

 squrce, e,g., star
$\sin \theta=1.22 \frac{\lambda}{d}$ (1st min.- circ. aperture)
Image is not a point, as expected from geometrical optics! Diffraction is responsible for this image pattern

36-48

Resolvability

Rayleigh's Criterion: two point sources are barely resolvable if their angular separation θ_{R} results in the central maximum of the diffraction pattern of one source's image is centered on the first minimum of the diffraction pattern of the other source's image.

$$
\left.\theta_{R}=\sin ^{-1}\left(1.22 \frac{\lambda}{d}\right)^{\theta_{R} \text { small }} \approx 1.22 \frac{\lambda}{d} \quad \text { (Rayleigh's criterion }\right)
$$

13-3 Diffraction - (獍射)

Why do the colors in a pointillism painting change with viewing distance?

Ex.13-8 36-3 pointillism

$\mathrm{D}=2.0 \mathrm{~mm}$
$\mathrm{d}=1.5 \mathrm{~mm} \quad$

$$
\theta_{\mathrm{R}}=1.22 \frac{\lambda}{d} . \quad \theta=\frac{D}{L} .
$$

(diameter of
the pupil)

$$
L=\frac{D d}{1.22 \lambda} .
$$

$$
L=\frac{\left(2.0 \times 10^{-3} \mathrm{~m}\right)\left(1.5 \times 10^{-3} \mathrm{~m}\right)}{(1.22)\left(400 \times 10^{-9} \mathrm{~m}\right)}=6.1 \mathrm{~m} .
$$

Ex.13-9 36-4

$$
\begin{aligned}
\theta_{o} & =\theta_{i}=\theta_{\mathrm{R}}=1.22 \frac{\lambda}{d} \\
& =\frac{(1.22)\left(550 \times 10^{-9} \mathrm{~m}\right)}{32 \times 10^{-3} \mathrm{~m}}=2.1 \times 10^{-5} \mathrm{rad}
\end{aligned}
$$

(a) angular separation
(b) separation in the focal
plane

The telescopes on some commercial and military surveillance satellites

Resolution of 85 cm and 10 cm respectively

$\frac{D}{L}=\theta_{\mathrm{R}}=1.22 \frac{\bullet}{d}$
$\lambda=550 \times 10^{-9} \mathrm{~m}$.
(a) $L=400 \times 10^{3} \mathrm{~m} \quad, \quad D=0.85 \mathrm{~m} \rightarrow d=0.32 \mathrm{~m}$.
(b) $D=0.10 \mathrm{~m} \rightarrow d=2.7 \mathrm{~m}$.

Diffraction by a Double Slit

Single slit $a \sim \lambda$

(a)

Two vanishingly narrow slits $a \ll \lambda$

Two Single slits $a \sim \lambda$

(b)

(c)

$$
\begin{aligned}
& \beta=\frac{\pi d}{\lambda} \sin \theta \\
& \alpha=\frac{\pi a}{\lambda} \sin \theta
\end{aligned}
$$

Ex.13-10 36-5

$\mathrm{d}=19.44 \mu \mathrm{~m}$
$a=4.050 \mu \mathrm{~m}$
$\lambda=405 \mathrm{~nm}$

$a \sin \theta=\lambda$

$a \sin \theta=2 \lambda$.
$d \sin \theta=m_{2} \lambda$ for $m=0,1,2, \ldots$

$$
m_{2}=\frac{d}{a}=\frac{19.44 \mu \mathrm{~m}}{4.050 \mu \mathrm{~m}}=4.8 . m_{2}=\frac{2 d}{a}=\frac{(2)(19.44 \mu \mathrm{~m})}{4.050 \mu \mathrm{~m}}=9.6 .
$$

Diffraction Gratings

Fig. 36-18
Fig. 36-19

Fig. 36-20

$$
d \sin \theta=m \lambda \text { for } m=0,1,2 \ldots \quad \text { (maxima-lines) }
$$

Width of Lines

$$
\Delta \theta_{\mathrm{hw}}=\frac{\lambda}{N d} \quad \text { (half width of central line) }
$$

Fig. 36-22

$$
\Delta \theta_{\mathrm{hw}}=\frac{\lambda}{N d \cos \theta} \text { (half width of line at } \theta \text {) }
$$

Grating Spectroscope

Fig. 36-24

Fig. 36-23

Compact Disc

\(\left.$$
\begin{array}{l|l}\text { First-order } \\
\text { maximum } \\
\text { tracking beam }\end{array}
$$ \quad \begin{array}{l}Central maximum

beam\end{array}\right) \quad\)| First-order |
| :--- |
| maximum |

Optically Variable Graphics

Fig. 36-27

36-60

全像術

Viewing a holograph

A Holograph

Gratings: Dispersion

$$
D=\frac{\Delta \theta}{\Delta \lambda} \text { (dispersion defined) } D=\frac{m}{d \cos \theta} \text { (dispersion of a grating) (36-30) }
$$

Angular position of maxima $d \sin \theta=m \lambda$
Differential of first equation $\quad d(\cos \theta) d \theta=m d \lambda$ (what change in angle does a change in wavelength produce?)
For small angles

$$
\begin{aligned}
& d \theta \rightarrow \Delta \theta \text { and } d \lambda \rightarrow \Delta \lambda \\
& d(\cos \theta) \Delta \theta=m \Delta \lambda \\
& \frac{\Delta \theta}{\Delta \lambda}=\frac{m}{d(\cos \theta)}
\end{aligned}
$$

Gratings: Resolving Power

$$
R=\frac{\lambda_{\mathrm{avg}}}{\Delta \lambda} \quad \text { (resolving power defined) }
$$

$$
R=N m \text { (resolving power of a grating) (36-32) }
$$

Rayleigh's criterion for halfwidth to resolve two lines

$$
\Delta \theta_{\mathrm{hw}}=\frac{\lambda}{N d \cos \theta}
$$

Substituting for $\Delta \theta$ in calculation $\Delta \theta_{\mathrm{hw}} \rightarrow \Delta \theta$ on previous slide
$d(\cos \theta) \Delta \theta=m \Delta \lambda$

$$
\rightarrow \frac{\lambda}{N}=m \Delta \lambda
$$

$$
R=\frac{\lambda}{\Delta \lambda}=N m
$$

Dispersion and Resolving Power Compared

Grating	N	$d(\mathrm{~nm})$	θ	$D\left({ }^{\circ} / \mu \mathrm{m}\right)$	R
A	10000	2540	13.4°	23.2	10000
B	20000	2540	13.4°	23.2	20000
C	10000	1360	25.5°	46.3	10000

${ }^{a}$ Data are for $\lambda=589 \mathrm{~nm}$ and $m=1$.

$\begin{aligned} & \stackrel{\rightharpoonup}{w} \\ & \stackrel{y}{y} \\ & \underset{y}{4} \end{aligned}$	
0	$13.4^{\circ} \quad \theta \text { (degrees) }$
$\begin{aligned} & \stackrel{\rightharpoonup}{y} \\ & \stackrel{y}{y} \\ & \underset{y}{4} \end{aligned}$	$\int_{1} \overbrace{1}^{\text {Grating }}$
0	$13.4^{\circ} \quad \theta \text { (degrees) }$
0	$\begin{gathered} 25.5^{\circ} \\ \theta \text { (degrees) } \end{gathered}$

X-Ray Diffraction

X-rays are electromagnetic radiation with wavelength $\sim 1 \AA$
$=10^{-10} \mathrm{~m}$ (visible light $\sim 5.5 \times 10^{-7} \mathrm{~m}$)

X-ray generation

X-ray wavelengths too short to be resolved by a standard optical grating

Fig. 36-29

$$
\theta=\sin ^{-1} \frac{m \lambda}{d}=\sin ^{-1} \frac{(1)(0.1 \mathrm{~nm})}{3000 \mathrm{~nm}}=0.0019^{\circ}
$$

Diffraction of x-rays by crystal

$d \sim 0.1 \mathrm{~nm}$
\rightarrow three-dimensional diffraction grating

$$
2 d \sin \theta=m \lambda \text { for } m=0,1,2 \ldots \text { (Bragg's law) }
$$

Fig. 36-30

X-Ray Diffraction, cont'd

$$
5 d=\sqrt{\frac{5}{4} a_{0}^{2}} \text { or } d=\frac{a_{0}}{20}=0.2236 a_{0}
$$

Fig. 36-31

Structural Coloring ky Diffraction

