
Home Work 8 

8-1 In Fig. 28-34, a conducting rectangular solid of dimensions dx = 5.00 m, dy = 3.00 

m, and dz = 2.00 m moves at constant velocity v = (20.0m/s)i through a uniform 

magnetic field B = (30.0mT)j. What are the resulting (a) electric field within the solid, 

in unit-vector notation, and (b) potential difference across the solid? 

              

Figure 28-34 Problems 15.          Figure 28-53  Problem 76. 

 

Sol:   

(a) We seek the electrostatic field established by the separation of charges (brought 

on by the magnetic force). With Eq. 28-10, we define the magnitude of the electric 

field as 

  | | | | 20.0 m/s 0.030 T 0.600 V/mE v B   . 

Its direction may be inferred from Figure 28-8; its direction is opposite to that 

defined by 
 
v B . In summary,  

ˆ(0.600V m)kE   

which insures that 
   
F q E v B  d i  vanishes. 

(b) Equation 28-9 yields (0.600V/m)(2.00 m) 1.20VV Ed   . 

 

8-2 Bainbridge's mass spectrometer, shown in Fig. 28-53, separates ions having the 

same velocity. The ions, after entering through slits, S1 and S2, pass through a velocity 

selector composed of an electric field produced by the charged plates P and P′, and a 

magnetic field B perpendicular to the electric field and the ion path. The ions that then 

pass undeviated through the crossed E and B fields enter into a region where a second 

magnetic field B’ exists, where they are made to follow circular paths. A photographic 

plate (or a modern detector) registers their arrival. Show that, for the ions, q/m = 

E/rBB′, where r is the radius of the circular orbit. 

Sol:  

http://edugen.wileyplus.com/edugen/courses/crs4957/halliday9118/halliday9088c28/halliday9118/halliday9088c28/halliday9088c28xlinks.xform?id=halliday9088c28-fig-0053


Using Eq. 28-16, the charge-to-mass ratio is 
q v

m B r



. With the speed of the ion 

given by /v E B (using Eq. 28-7), the expression becomes 

/q E B E

m B r BB r
 

 
. 

8-3 A 1.0 kg copper rod rests on two horizontal rails 1.0 m apart and carries a current of 

50 A from one rail to the other. The coefficient of static friction between rod and rails is 

0.60. What are the (a) magnitude and (b) angle (relative to the vertical) of the smallest 

magnetic field that puts the rod on the verge of sliding? 

Sol: (a) The magnetic force must push horizontally on the rod to overcome the force of 

friction, but it can be oriented so that it also pulls up on the rod and thereby reduces 

both the normal force and the force of friction. The forces acting on the rod are: 

F,  

the force of the magnetic field; mg, the magnitude of the (downward) force of gravity; 

NF , the normal force exerted by the stationary rails upward on the rod; and 

f ,  the 

(horizontal) force of friction. For definiteness, we assume the rod is on the verge of 

moving eastward, which means that 

f  points westward (and is equal to its 

maximum possible value sFN). Thus, 

F  has an eastward component Fx and an 

upward component Fy, which can be related to the components of the magnetic field 

once we assume a direction for the current in the rod. Thus, again for definiteness, we 

assume the current flows northward. Then, by the right-hand rule, a downward 

component (Bd) of 

B  will produce the eastward Fx, and a westward component (Bw) 

will produce the upward Fy. Specifically, 

, .x d y wF iLB F iLB   

Considering forces along a vertical axis, we find 

N y wF mg F mg iLB     

so that 

  
f  f

s,max
 

s
mg  iLB

w . 

It is on the verge of motion, so we set the horizontal acceleration to zero: 

 0 .x d s wF f iLB mg iLB      

The angle of the field components is adjustable, and we can minimize with respect to 

it. Defining the angle by Bw = B sin and Bd = B cos (which means  is being 

measured from a vertical axis) and writing the above expression in these terms, we 

obtain 



 
 

cos sin
cos sin

s
s

s

mg
iLB mg iLB B

iL


  

  
   


 

which we differentiate (with respect to ) and set the result equal to zero. This 

provides a determination of the angle: 

  
  tan1 

s  tan1 0.60  31.  

Consequently, 

  
   

2

min

0.60 1.0kg 9.8m s
0.10T.

50A 1.0m cos31 0.60sin31
B  

  
 

(b) As shown above, the angle is    1 1tan tan 0.60 31 .s     

 
 

8-4 A positron with kinetic energy 2.00 keV is projected into a uniform magnetic field 

B of magnitude 0.100 T, with its velocity vector making an angle of 89.0° with B. 

Find (a) the period, (b) the pitch p, and (c) the radius r of its helical path. 

Sol:   

(a) If v is the speed of the positron then v sin  is the component of its velocity in 

the plane that is perpendicular to the magnetic field. Here  is the angle between 

the velocity and the field (89°). Newton’s second law yields eBv sin  = me(v sin 

)
2
/r, where r is the radius of the orbit. Thus r = (mev/eB) sin . The period is given 

by 

 

 
  

31

10

19

2 9.11 10 kg22
3.58 10 s.

sin 1.60 10 C 0.100T

emr
T

v eB







 
    


 

 

The equation for r is substituted to obtain the second expression for T. 

 

(b) The pitch is the distance traveled along the line of the magnetic field in a time 

interval of one period. Thus p = vT cos . We use the kinetic energy to find the 

speed: K m ve 1
2

2  means 

  3 19

7

31

2 2.00 10 eV 1.60 10 J eV2
2.65 10 m s .

9.11 10 kge

K
v

m





 
   


 

 

Thus, 



  7 10 42.65 10 m s 3.58 10 s cos 89 1.66 10 m .p        

 

(c) The orbit radius is 

 

  
  

31 7

3

19

9.11 10 kg 2.65 10 m s sin89sin
1.51 10 m .

1.60 10 C 0.100 T

em v
R

eB








  
   


 

            

 

 

 

8-5.  

 

27.90.IDENTIFY:   The current direction is perpendicular to ,B  so .F IlB  If the liquid doesn’t flow, a 

force ( )p A  from the pressure difference must oppose F. 

SET UP:   / ,J I A  where .A hw  

EXECUTE:   (a) / / .p F A IlB A JlB     

(b) 
5

6 2(1 00 atm)(1 013 10  Pa/atm)
1 32 10 A/m .

(0 0350 m)(2 20 T)

p
J

lB

   
    

 
 

EVALUATE:   A current of 1 A in a wire with diameter 1 mm corresponds to a current 



density of 6 21 3 10  A/m ,J     so the current density calculated in part (c) is a typical 

value for circuits. 

 

 

 

 

 

 

 

 

 

 

8-6. 

 

27.91.IDENTIFY:   The electric and magnetic fields exert forces on the moving charge. The work done by the 

electric field equals the change in kinetic energy. At the top point, 
2

y

v
a

R
  and this acceleration 

must correspond to the net force. 

SET UP:   The electric field is uniform so the work it does for a displacement y in the y-direction is 

.W Fy qEy   At the top point, BF  is in the -directiony  and EF  is in the y-direction. 



EXECUTE:   (a) The maximum speed occurs at the top of the cycloidal path, and hence the radius 

of curvature is greatest there. Once the motion is beyond the top, the particle is being slowed by 

the electric field. As it returns to 0,y   the speed decreases, leading to a smaller magnetic force, 

until the particle stops completely. Then the electric field again provides the acceleration in the 

-directiony  of the particle, leading to the repeated motion. 

(b) 
21

2
W qEy mv   and 

2
.

qEy
v

m
  

(c) At the top, 
2 2

.
2

y

mv m qEy
F qE qvB qE

R y m
         2qE qvB  and 

2
.

E
v

B
  

EVALUATE:   The speed at the top depends on B because B determines the 

y-displacement and the work done by the electric force depends on the 

y-displacement. 


