Home Work Solutions 6

1. How long does it take electrons to get from a car battery to the starting motor? Assume the current is 300 A and the electrons travel through a copper wire with cross-sectional area $0.21 \mathrm{~cm}^{2}$ and length 0.85 m . The number of charge carriers per unit volume is $8.49 \times 10^{28} \mathrm{~m}^{-3}$.
Sol
We use $v_{d}=J / n e=i / A n e$. Thus,

$$
\begin{aligned}
t & =\frac{L}{v_{d}}=\frac{L}{i / \text { Ane }}=\frac{L A n e}{i}=\frac{(0.85 \mathrm{~m})\left(0.21 \times 10^{-14} \mathrm{~m}^{2}\right)\left(8.47 \times 10^{28} / \mathrm{m}^{3}\right)\left(1.60 \times 10^{-19} \mathrm{C}\right)}{300 \mathrm{~A}} \\
& =8.1 \times 10^{2} \mathrm{~s}=13 \mathrm{~min} .
\end{aligned}
$$

2. Figure 26-28 shows wire section 1 of diameter $D_{1}=4.00 R$ and wire section 2 of diameter $D_{2}=2.00 R$, connected by a tapered section. The wire is copper and carries a current. Assume that the current is uniformly distributed across any cross-sectional area through the wire's width. The electric potential change V along the length $L=2.00$ m shown in section 2 is 10.0 mV . The number of charge carriers per unit volume is $8.49 \times 10^{28} \mathrm{~m}^{-3}$. What is the drift speed of the conduction electrons in section 1 ?

Figure 26-28 Problem $\underline{34}$.
Sol
The number density of conduction electrons in copper is $n=8.49 \times 10^{28} / \mathrm{m}^{3}$. The electric field in section 2 is $(10.0 \mu \mathrm{~V}) /(1.75 \mathrm{~m})=5.71 \mu \mathrm{~V} / \mathrm{m}$. Since $\rho=1.69 \times 10^{-8} \Omega \cdot \mathrm{~m}$ for copper (see Table 26-1) then Eq. 26-10 leads to a current density vector of magnitude $J_{2}=(5.71 \mu \mathrm{~V} / \mathrm{m}) /\left(1.69 \times 10^{-8}\right.$ $\Omega \cdot m)=338 \mathrm{~A} / \mathrm{m}^{2}$ in section 2 . Conservation of electric current from section 1 into section 2 implies

$$
J_{1} A_{1}=J_{2} A_{2} \quad \Rightarrow J_{1}\left(4 \pi R^{2}\right)=J_{2}\left(\pi R^{2}\right)
$$

(see Eq. 26-5). This leads to $J_{1}=84.5 \mathrm{~A} / \mathrm{m}^{2}$. Now, for the drift speed of conduction-electrons in section 1, Eq. 26-7 immediately yields

$$
v_{d}=\frac{J_{1}}{n e}=6.22 \times 10^{-9} \mathrm{~m} / \mathrm{s}
$$

3. Earth's lower atmosphere contains negative and positive ions that are produced by radioactive elements in the soil and cosmic rays from space. In a certain region, the atmospheric electric field strength is $120 \mathrm{~V} / \mathrm{m}$ and the field is directed vertically down. This field causes singly charged positive ions, at a density of $620 \mathrm{~cm}^{-3}$, to drift downward and singly charged negative ions, at a density of $550 \mathrm{~cm}^{-3}$, to drift upward (Fig. 26-27). The measured conductivity of the air in that region is $2.70 \times 10^{-14}(\Omega \cdot \mathrm{~m})^{-1}$. Calculate (a) the magnitude of the current density and (b) the ion drift speed, assumed to be the same for positive and negative ions.

Figure 26-27 Problem 32.
Sol
We use $J=\sigma E=\left(n_{+}+n_{-}\right) e v_{d}$, which combines Eq. 26-13 and Eq. 26-7.
(a) The magnitude of the current density is

$$
J=\sigma E=\left(2.70 \times 10^{-14} / \Omega \cdot \mathrm{m}\right)(120 \mathrm{~V} / \mathrm{m})=3.24 \times 10^{-12} \mathrm{~A} / \mathrm{m}^{2}
$$

(b) The drift velocity is

$$
v_{d}=\frac{\sigma E}{\left(n_{+}+n_{-}\right) e}=\frac{\left(2.70 \times 10^{-14} / \Omega \cdot \mathrm{m}\right)(120 \mathrm{~V} / \mathrm{m})}{\left[(640+550) / \mathrm{cm}^{3}\right]\left(1.60 \times 10^{-19} \mathrm{C}\right)}=1.70 \mathrm{~cm} / \mathrm{s} .
$$

4. Swimming during a storm. Figure 26-30 shows a swimmer at distance $D=35.0 \mathrm{~m}$ from a lightning strike to the water, with current $I=78 \mathrm{kA}$. The water has resistivity $30 \Omega \cdot \mathrm{~m}$, the width of the swimmer along a radial line from the strike is 0.70 m , and his resistance across that width is $4.00 \mathrm{k} \Omega$. Assume that the current spreads through the water over a hemisphere centered on the strike point. What is the current through the swimmer?

Figure 26-30 Problem 36.
Sol
Since the current spreads uniformly over the hemisphere, the current density at any given radius r from the striking point is $J=I / 2 \pi r^{2}$. From Eq. 26-10, the magnitude of the electric field at a radial distance r is

$$
E=\rho_{w} J=\frac{\rho_{w} I}{2 \pi r^{2}},
$$

where $\rho_{w}=30 \Omega \cdot \mathrm{~m}$ is the resistivity of water. The potential difference between a point at
radial distance D and a point at $D+\Delta r$ is

$$
\Delta V=-\int_{D}^{D+\Delta r} E d r=-\int_{D}^{D+\Delta r} \frac{\rho_{w} I}{2 \pi r^{2}} d r=\frac{\rho_{w} I}{2 \pi}\left(\frac{1}{D+\Delta r}-\frac{1}{D}\right)=-\frac{\rho_{w} I}{2 \pi} \frac{\Delta r}{D(D+\Delta r)},
$$

which implies that the current across the swimmer is

$$
i=\frac{|\Delta V|}{R}=\frac{\rho_{w} I}{2 \pi R} \frac{\Delta r}{D(D+\Delta r)} .
$$

Substituting the values given, we obtain
$i=\frac{(30.0 \Omega \cdot \mathrm{~m})\left(7.80 \times 10^{4} \mathrm{~A}\right)}{2 \pi\left(4.00 \times 10^{3} \Omega\right)} \frac{0.70 \mathrm{~m}}{(38.0 \mathrm{~m})(38.0 \mathrm{~m}+0.70 \mathrm{~m})}=4.43 \times 10^{-2} \mathrm{~A}$.

