Home Work 11

11-1 Using the loop rule, derive the differential equation for an $L C$ circuit:

$$
L \frac{d^{2} q}{d t^{2}}+\frac{1}{C} q=0
$$

11-2 A series circuit containing inductance L_{1} and capacitance C_{1} oscillates at angular frequency ω. A second series circuit, containing inductance L_{2} and capacitance C_{2}, oscillates at the same angular frequency. In terms of ω, what is the angular frequency of oscillation of a series circuit containing all four of these elements? Neglect resistance. (Hint: Use the formulas for equivalent capacitance and equivalent inductance; see Section $\underline{25-4}$ and Problem 47 in Chapter 30.)

11-3 An alternating source with a variable frequency, a capacitor with capacitance C, and a resistor with resistance R are connected in series. The following figure gives the impedance Z of the circuit versus the driving angular frequency ω_{d}; the curve reaches an asymptote of 500Ω, and the horizontal scale is set by $\omega_{d s}=300 \mathrm{rad} / \mathrm{s}$. The figure also gives the reactance X_{C} for the capacitor versus ω_{d}. What are (a) R and (b) C ?

11-4 An alternating source with a variable frequency, an inductor with inductance L, and a resistor with resistance R are connected in series. The following figure gives the impedance Z of the circuit versus the driving angular frequency ω_{d}, with the horizontal axis scale set by $\omega_{d s}=1600 \mathrm{rad} / \mathrm{s}$. The figure also gives the reactance X_{L} for the inductor versus ω_{d}. What are (a) R and (b) L ?

