『北區高中物理科學人才培育』計畫高二物理期末考試卷

1 The electric potential between the electrodes of a vacuum tube diode is given by $\mathrm{V}(x)=\mathrm{c} x^{3}$ ， where x is the distance from the cathode and C is a constant．Assume that the distance between the cathode and anode is 13.0 mm and the potential difference between electrodes is 240 V （a） Determine the value of C．（10\％）（b）Obtain a formula for the electric field between the electrodes as a function of x ．（10\％）

2 A source with $\operatorname{emf} \mathscr{E}$ and internal resistance r is connected to an external circuit．（a）Show that the power output of the source is maximum when the current in the circuit is one－half the short－circuit current of the source．（10\％）（b）If the external circuit consists of a resistance R ， show that the power output is maximum when $R=r$ and that the maximum power is $\varepsilon^{2} / 4 \mathrm{r}$ ． （10\％）

3 An electron follows a helical path in a uniform magnetic field given by $\mathbf{B}=(20 \mathbf{i}-50 \mathbf{j}-30 \mathbf{k})$ mT ．At time $\mathrm{t}=0$ ，the electron＇s velocity is given by $\mathbf{v}=(20 \mathbf{i}-30 \mathbf{j}+50 \mathbf{k}) \mathrm{m} / \mathrm{s}$ ．（a）What is the angle φ between \mathbf{v} and \mathbf{B} ？What is the（b）radius，（c）pitch（螺距）of the helical path？（ 20% ）

4 二線圈配置如右圖，其自感分別為 L_{1} 及 L_{2} ，互感為 M ；試證

當其為串聯時之等效電感為（ 20% ）

$$
L_{\mathrm{eq}}=L_{1}+L_{2}+2 M
$$

5 二玻璃板於一端接觸，另端分離如右圖。當波長 600 nm 的光垂直入設於上板時，你會看到上板上有 9 條暗紋和 8 條亮紋。如果你把二板在分離端的距離再增加 600 nm ，此時上板上會有幾條暗紋？（20\％）

1 Sol:

(a) $V=C x^{4 / 3}$
$C=V / x^{4 / 3}=240 \mathrm{~V} /\left(13.0 \times 10^{-3} \mathrm{~m}\right)^{4 / 3}=7.85 \times 10^{4} \mathrm{~V} / \mathrm{m}^{4 / 3}$
(b) $E_{x}=-\frac{\partial V}{\partial x}=-\frac{4}{3} C x^{1 / 3}=-\left(1.05 \times 10^{5} \mathrm{~V} / \mathrm{m}^{4 / 3}\right) x^{1 / 3}$

The minus sign means that E_{x} is in the $-x$-direction, which says that \bar{E} points from the positive anode toward the negative cathode.

2 Sol:
(a) $P=\varepsilon I-I^{2} r$, so $\frac{d P}{d I}=\varepsilon-2 I r=0$ for maximum power output and $I_{P \max }=\frac{1}{2} \frac{\varepsilon}{r}=\frac{1}{2} I_{\text {short circuit }}$.
(b) For the maximum power output of part (a), $I=\frac{\varepsilon}{r+R}=\frac{1}{2} \frac{\varepsilon}{r} . \quad r+R=2 r$ and $R=r$.

Then, $\quad P=I^{2} R=\left(\frac{\varepsilon}{2 r}\right)^{2} r=\frac{\varepsilon^{2}}{4 r}$.

3 Sol:
(a) $\mathbf{v} \cdot \mathbf{B}=v B \cos \phi, a=\phi=\cos ^{-1}(2 / 19)=84^{\circ}$.
(b) We find $\mathrm{v}_{\perp}=\mathrm{v} \sin \phi=61.3 \mathrm{~m} / \mathrm{s}$, so $r=m \mathrm{v}_{\perp} / e B=5.7 \mathrm{~nm}$.
(c) $\mathrm{v} \|=\mathrm{v} \cos \phi=6.5 \mathrm{~m} / \mathrm{s}$, so $p=2 \pi m \mathrm{v} \| / e B=40.7 \mathrm{~nm}$.

4 Sol:

$$
L_{1} \frac{d i_{1}}{d t}+L_{2} \frac{d i_{2}}{d t}+M_{21} \frac{d i_{1}}{d t}+M_{12} \frac{d i_{2}}{d t} \equiv L_{\mathrm{eq}} \frac{d i}{d t} .
$$

But $i=i_{1}+i_{2} \Rightarrow \frac{d i}{d t}=\frac{d i_{1}}{d t}+\frac{d i_{2}}{d t}$ and $M_{12}=M_{21} \equiv M$,
so $\left(L_{1}+L_{2}+2 M\right) \frac{d i}{d t}=L_{\text {eq }} \frac{d i}{d t}$ and $L_{\text {eq }}=L_{1}+L_{2}+2 M$.

5 Sol:
By the condition $m \lambda=2 y$ where y is the thickness of the air-film between the plates directly underneath the middle of a dark band), the edge of the plates (the edge where they are not touching) are $y=8 \lambda / 2=2400 \mathrm{~nm}$ apart (where we have assumed that the middle of the ninth dark band is at the edge). Increasing that to $y^{\prime}=3000 \mathrm{~nm}$ would correspond to m^{\prime} $=2 y^{\prime} / \lambda=10$ (counted as the eleventh dark band, since the first one corresponds to $m=0$). There are thus 11 dark fringes along the top plate.

