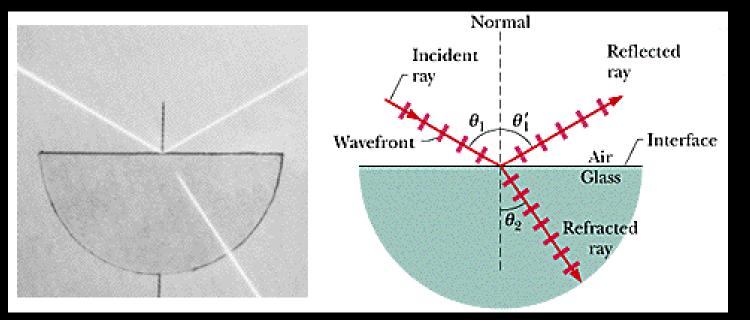


1. 反射 (reflection)與折射 (refraction)

- 2. 干防 (interference)
- 3. 繞射 (diffraction)



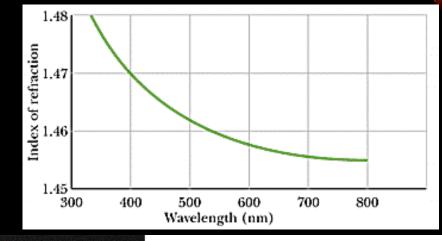


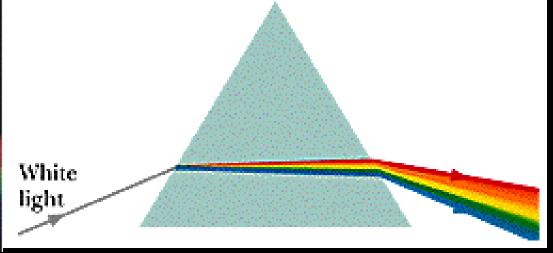
The Index of RefractionThe Stealth Aircraft F-117A

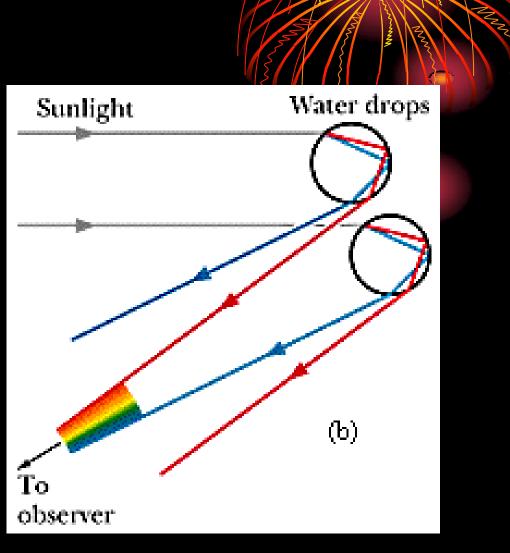
TABLE 34-1 SOME INDICES OF REFRACTION^a

MEDIUM	INDEX	MEDIUM	INDEX
Vacuum	exactly 1	Typical crown glass	1.52
Air (STP)∛	1.00029	Sodium chloride	1.54
Water (20° C)	1.33	Polystyrene	1.55
Acetone	1.36	Carbon disulfide	1.63
Ethyl alcohol	1.36	Heavy flint glass	1.65
Sugar solution (30%)	1.38	Sapphire	1.77
Fused quartz	1.46	Heaviest flint glass	1.89
Sugar solution (80%)	1.49	Diamond	2.42



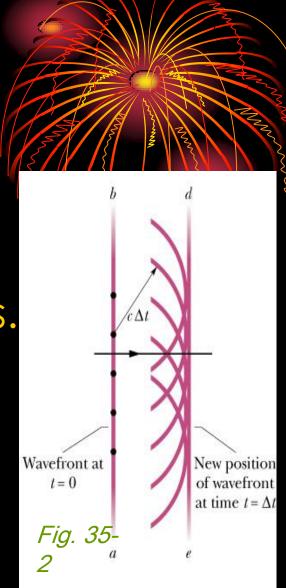


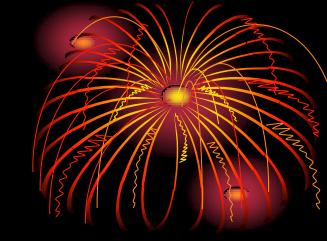




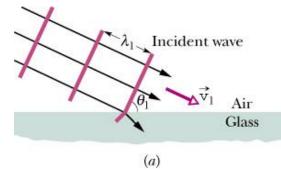
What produces the blue-green of a Morpho's wing? How do colorshifting inks shift colors?

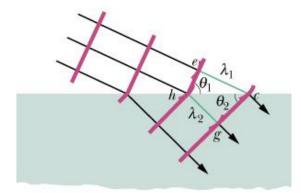
All points on a wavefront serve as point sources of spherical secondary wavelets. After a time t, the new position of the wavefront will be that of a surface tangent to these secondary wavelets.



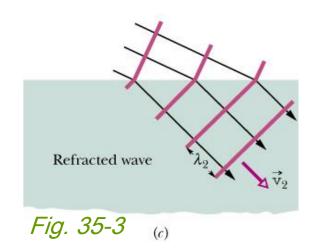


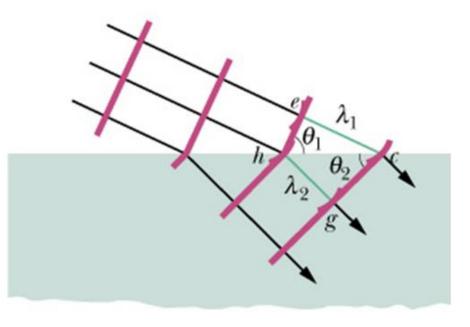
Law of Refraction from Huygens' principle





(b)





$$t_{ec} = t_{hg} = \frac{\lambda_1}{\nu_1} = \frac{\lambda_2}{\nu_2} \rightarrow \frac{\lambda_1}{\lambda_2} = \frac{\nu_1}{\nu_2}$$
$$\sin \theta_1 = \frac{\lambda_1}{hc} \quad \text{(for triangle hce)}$$
$$\sin \theta_2 = \frac{\lambda_2}{hc} \quad \text{(for triangle hcg)}$$

$$\frac{\sin\theta_1}{\sin\theta_2} = \frac{\lambda_1}{\lambda_2} = \frac{v_1}{v_2}$$

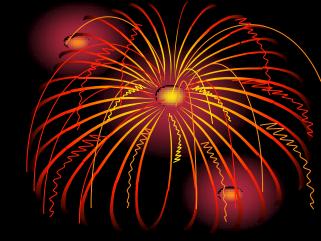
С

Index of Refraction: $n = \frac{c}{c}$ V

$$n_1 = \frac{c}{v_1}$$
 and $n_2 = \frac{c}{v_2}$

 $\frac{\sin\theta_1}{\sin\theta_2} = \frac{c/n_1}{c/n_2} = \frac{n_2}{n_1}$

Law of Refraction: $n_1 \sin \theta_1 = n_2 \sin \theta_2$



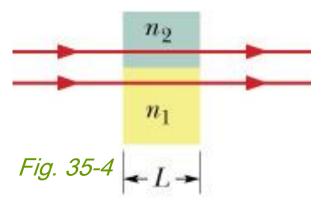
Phase Zifference, Wavelength and Index of Refraction

Wavelength and Index of Refraction

$$\frac{\lambda_n}{\lambda} = \frac{v}{c} \longrightarrow \lambda_n = \lambda \frac{v}{c} \longrightarrow \lambda_n = \frac{\lambda}{n}$$
$$f_n = \frac{v}{\lambda_n} = \frac{c/n}{\lambda/n} = \frac{c}{\lambda} = f$$

The frequency of light in a medium is the same as it is in vacuum

Phase Difference



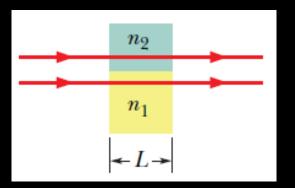
Since wavelengths in n1 and n2 are different, the two beams may no longer be in phase

Number of wavelengths in n_1 : $N_1 = \frac{L}{\lambda_{n_1}} = \frac{L}{\lambda/n_1} = \frac{Ln_1}{\lambda}$ Number of wavelengths in n_2 : $N_2 = \frac{L}{\lambda_{n_2}} = \frac{L}{\lambda/n_2} = \frac{Ln_2}{\lambda}$

Assuming
$$n_2 > n_1$$
: $N_2 - N_1 = \frac{Ln_2}{\lambda} - \frac{Ln_2}{\lambda} = \frac{L}{\lambda} (n_2 - n_1)$

 $N_2 - N_1 = 1/2$ wavelength \rightarrow destructive interference

Ex.11-1 35-1



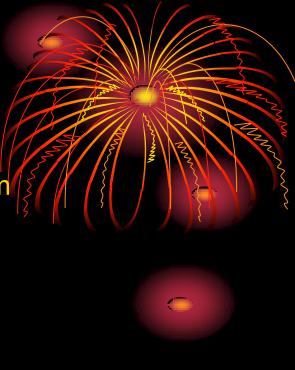
wavelength 550.0 nm $\frac{2}{3}$ n₂=1.600 and L = 2.600 m

$$N_2 - N_1 = \frac{L}{\lambda} (n_2 - n_1)$$

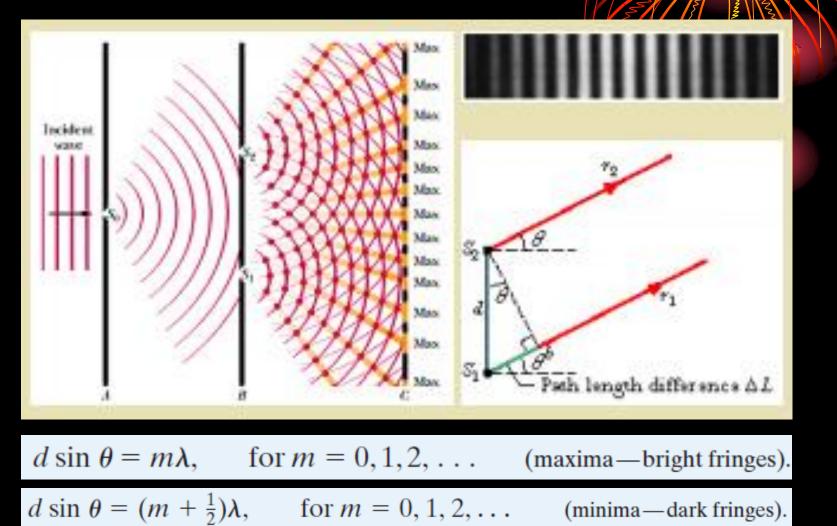
= $\frac{2.600 \times 10^{-6} \text{ m}}{5.500 \times 10^{-7} \text{ m}} (1.600 - 1.000)$
= 2.84. (Ans

phase difference = $17.8 \text{ rad} \approx 1020^{\circ}$

effective phase difference = 0.84 wavelength



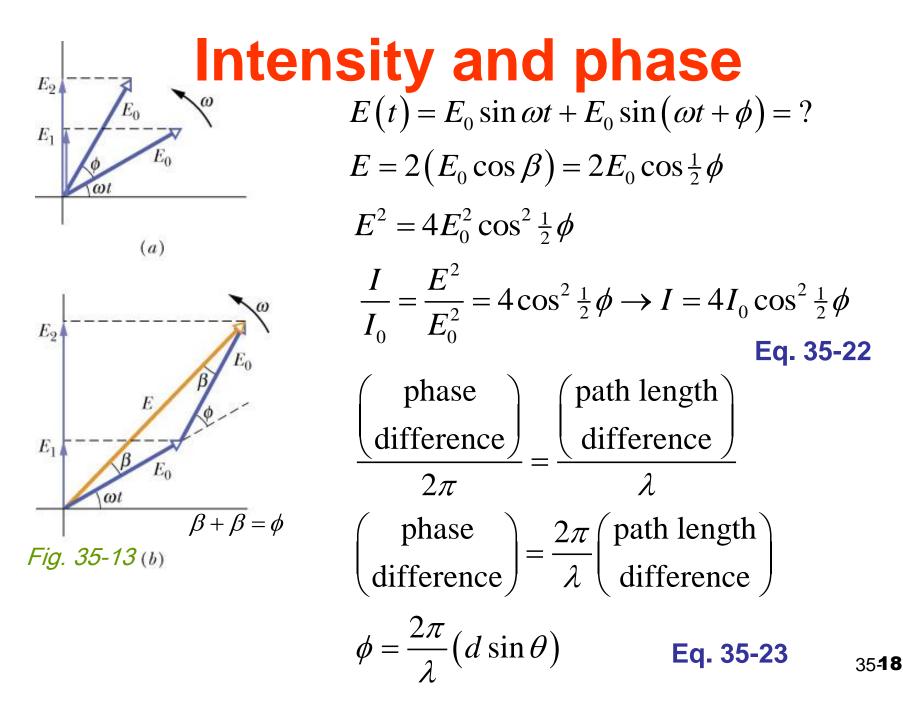
Young's Experiment

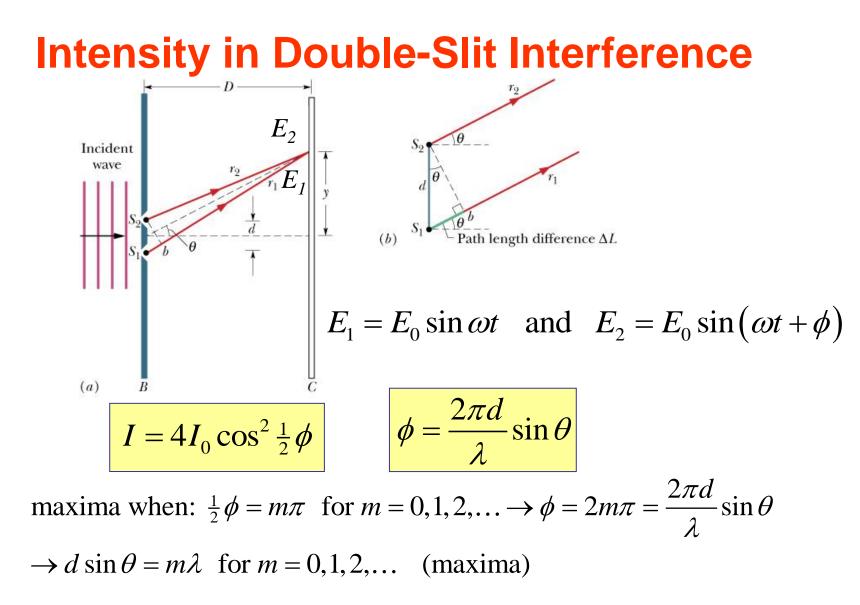


Two sources to produce an interference that is stable over time, if their light has a *phase relationship* that does not change with time: $E(t)=E_0\cos(\omega t+\phi)$

Coherent sources: Phase ϕ must be well defined and constant. When waves from coherent sources meet, stable interference can occur — laser light (produced by cooperative behavior of atoms)

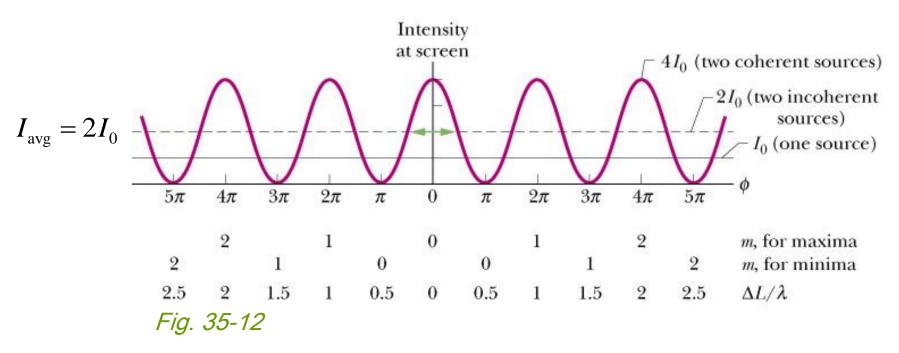
Incoherent sources: ϕ jitters randomly in time, no stable interference occurs – sunlight

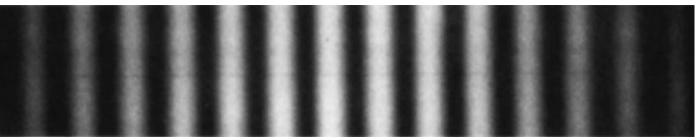




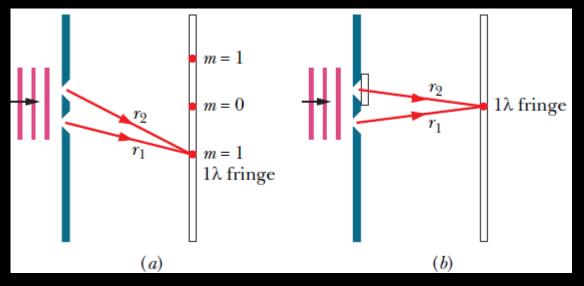
minima when: $\frac{1}{2}\phi = (m + \frac{1}{2})\pi \rightarrow d\sin\theta = (m + \frac{1}{2})\lambda$ for m = 0, 1, 2, ... (minima)

Intensity in Double-Slit Interference





Ex.11-2 35-2





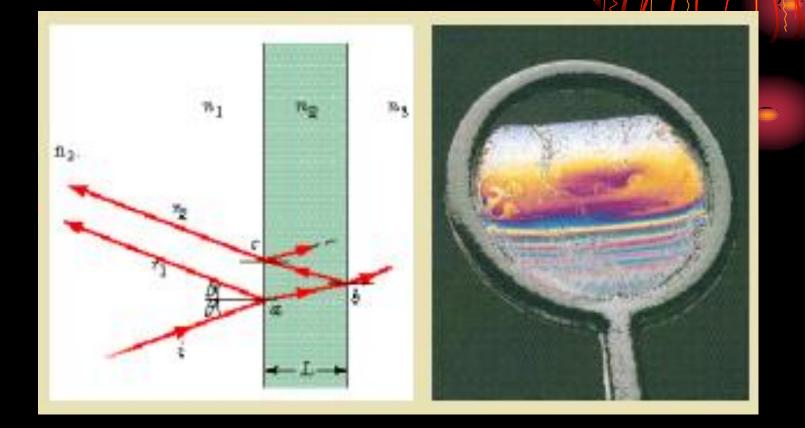
$$N_2 - N_1 = \frac{L}{\lambda} (n_2 - n_1)$$

wavelength 600 nm

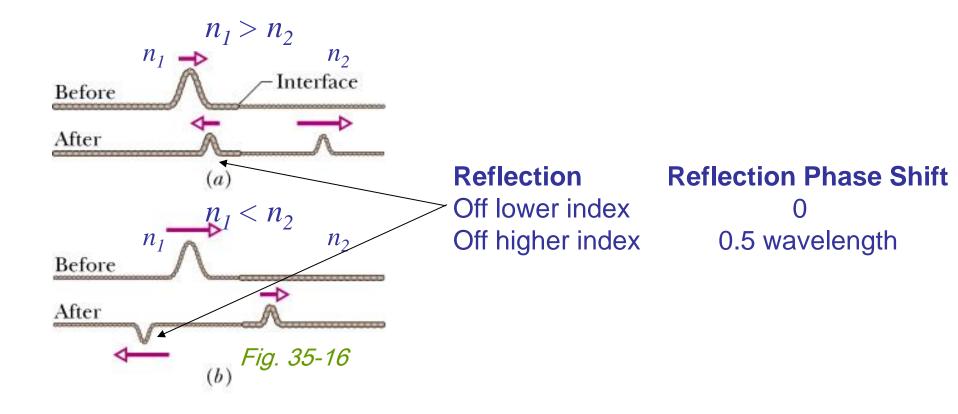
1 → m = 0

$$L = \frac{\lambda(N_2 - N_1)}{n_2 - n_1} = \frac{(600 \times 10^{-9} \text{ m})(1)}{1.50 - 1.00} \text{ m} = 1.5 \text{ and}$$
$$= 1.2 \times 10^{-6} \text{ m}. \qquad \text{(An)}$$

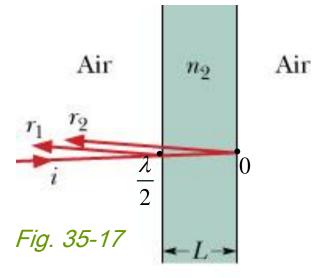
Interference form Thin Films



Reflection Phase Shifts



Phase Difference in Thin-Film Interference



Three effects can contribute to the phase difference between r_1 and r_2 .

- 1. Differences in reflection conditions
- 2. Difference in path length traveled.
- 3. Differences in the media in which the waves travel. One must use the wavelength in each medium (λ / n) , to calculate the phase.

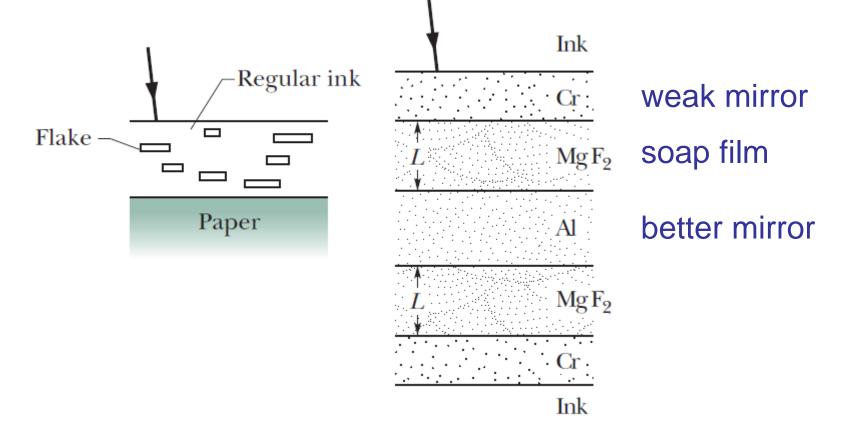
Equations for Thin-Film Interference

 $\frac{1}{2}$ wavelength phase difference to difference in reflection of r_1 and r_2

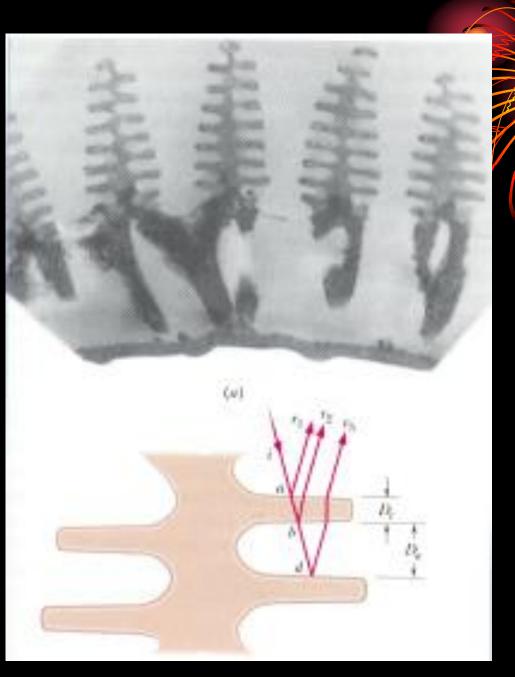
$$2L = \frac{\text{odd number}}{2} \times \text{wavelength} = \frac{\text{odd number}}{2} \times \lambda_{n2} \quad \text{(in-phase waves)}$$
$$2L = \text{integer} \times \text{wavelength} = \text{integer} \times \lambda_{n2} \quad \text{(out-of-phase waves)}$$

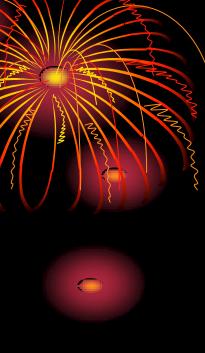
$$\lambda_{n2} = \frac{\lambda}{n_2} \frac{2L = \left(m + \frac{1}{2}\right) \frac{\lambda}{n_2}}{2L = m \frac{\lambda}{n_2}} \text{ for } m = 0, 1, 2, \dots \text{ (maxima-- bright film in air)}$$

Color Shifting by Paper Currencies, paints and Morpho Butterflies

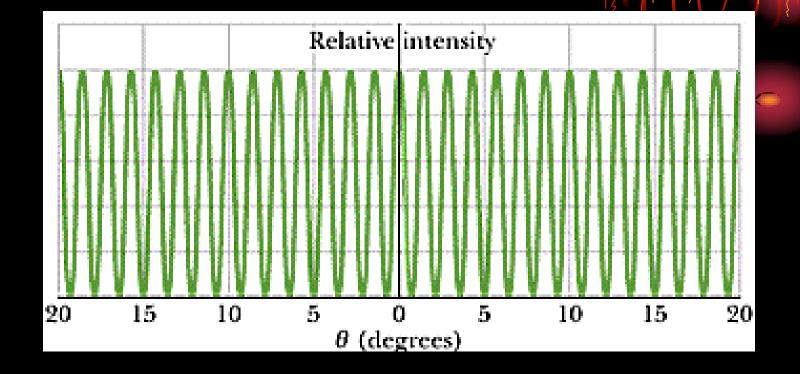


looking directly down : red or red-yellow tilting : green





雙狹缝干涉之強度



Ex.11-3 35-3 Brighted reflected light from a water film

n₂=1.33

$$2L = \frac{\text{odd number}}{2} \times \frac{\lambda}{n_2},$$

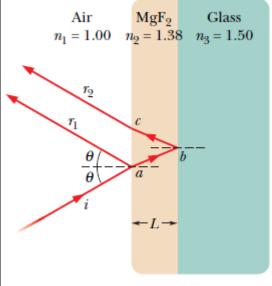
 $2L = (m + \frac{1}{2})\frac{\lambda}{n_2}.$

$$\lambda = \frac{2n_2L}{m + \frac{1}{2}} = \frac{(2)(1.33)(320 \text{ nm})}{m + \frac{1}{2}} = \frac{851 \text{ nm}}{m + \frac{1}{2}}.$$

m = 0, 1700 nm, infrared
m = 1, 567 nm, yellow-green
m = 2, 340 nm, ultraviolet

thickness 320 nm

Ex.11-4 35-4 anti-reflection coating

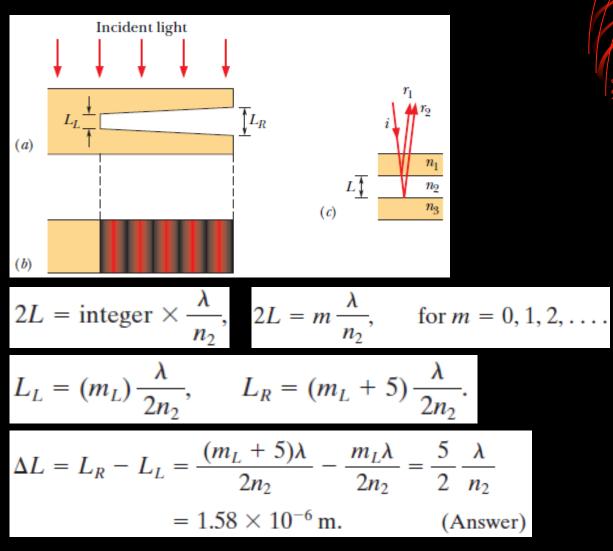


$$2L = \frac{\text{odd number}}{2} \times \frac{\lambda}{n_2}$$

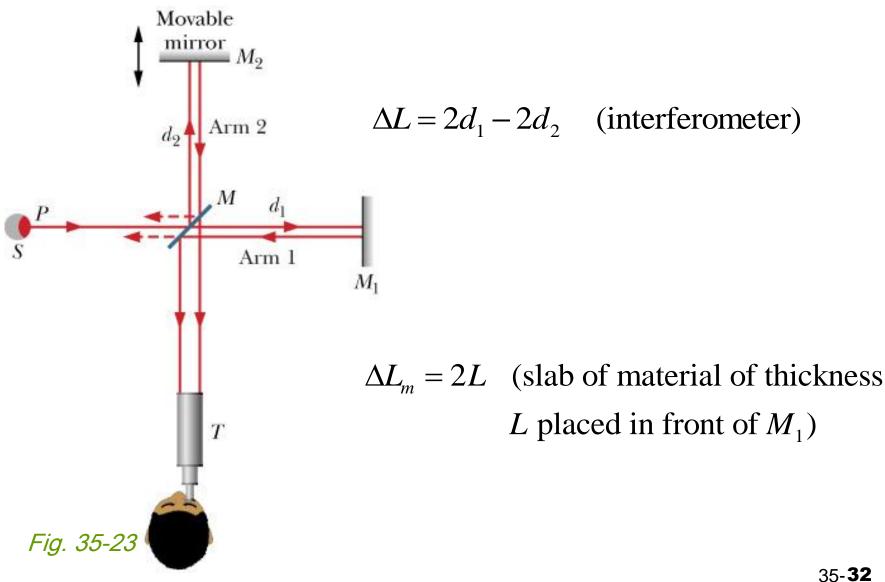
$$L = (m + \frac{1}{2}) \frac{\lambda}{2n_2}, \quad \text{for } m = 0, 1, 2, \dots$$

$$L = \frac{\lambda}{4n_2} = \frac{550 \text{ nm}}{(4)(1.38)} = 99.6 \text{ nm}.$$

Ex.11-5 35-5 thin air wedge



Michelson Interferometer



Determining Material thickness L

$$N_m = \frac{2L}{\lambda_m} = \frac{2Ln}{\lambda}$$
 (number of wavelengths

in slab of material)

$$N_a = \frac{2L}{\lambda}$$
 (number of wavelengths
in same thickness of air)

$$N_{m} - N_{a} = \frac{2Ln}{\lambda} - \frac{2L}{\lambda} = \frac{2L}{\lambda} (n-1)$$
 (difference in wavelengths
for paths with and without
thin slab)

Problem 35-81

In Fig. 35-49, an airtight chamber of length $d = 5.0 \ cm$ is placed in one of the arms of a Michelson interferometer. (The glass window on each end of the chamber has negligible thickness.) Light of wavelength $\lambda = 500$ nm is used. Evacuating the air from the chamber causes a shift of 60 bright fringes. From these data and to six significant figures, find the index of refraction of air at atmospheric pressure.

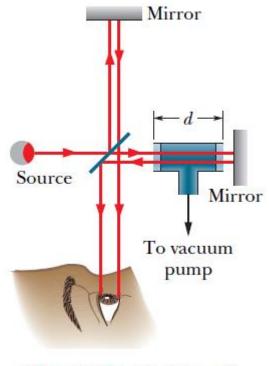


FIG. 35-49 Problem 81.

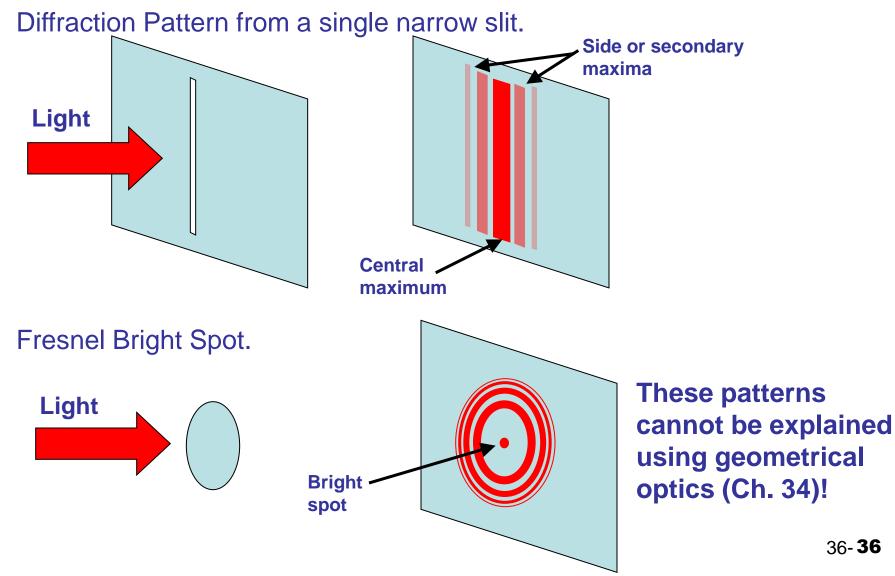
Solution to Problem 35-81

 ϕ_1 the phase difference with air $\ \ ; \ \ 2 \ \ ; \ vacuum$

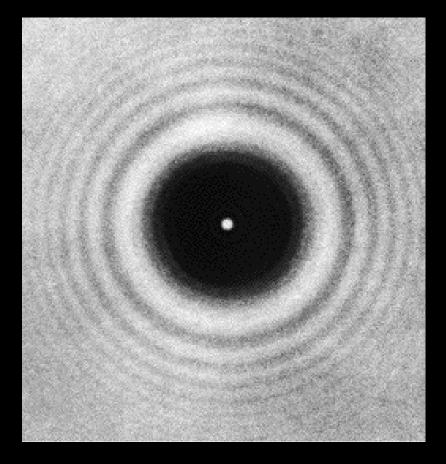
$$\phi_1 - \phi_2 = 2L \bigwedge^{2\pi n} - \frac{2\pi}{\lambda} \bigotimes^{4\pi n} - \frac{10}{\lambda}$$
$$\frac{4\pi \partial - 10}{\lambda} = 2N\pi \qquad N \text{ fringes}$$

$$n = 1 + \frac{N\lambda}{2L} = 1 + \frac{60\text{G}00 \times 10^{-9} \text{ mh}}{2\text{G}0 \times 10^{-2} \text{ mh}} = 1.00030 \text{ .}$$

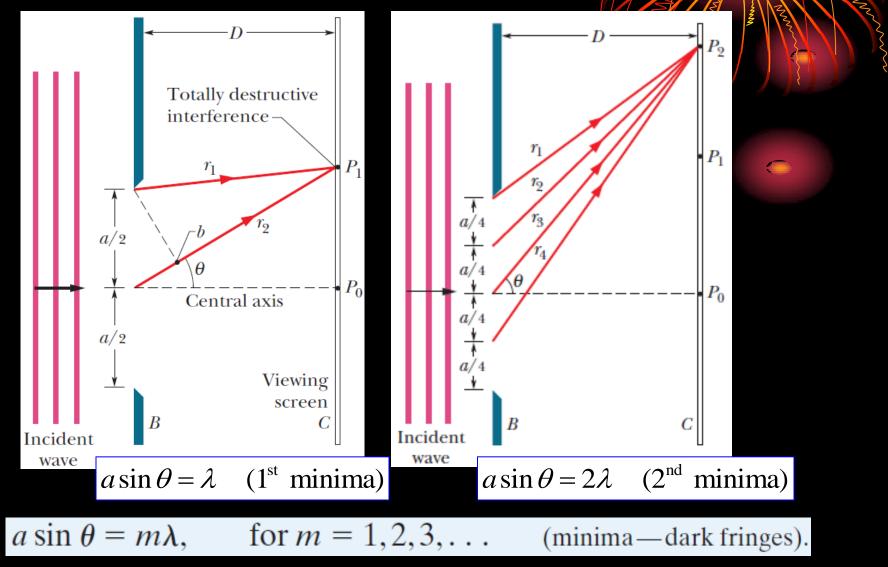
11-3 Diffraction and the Wave Theory of Light

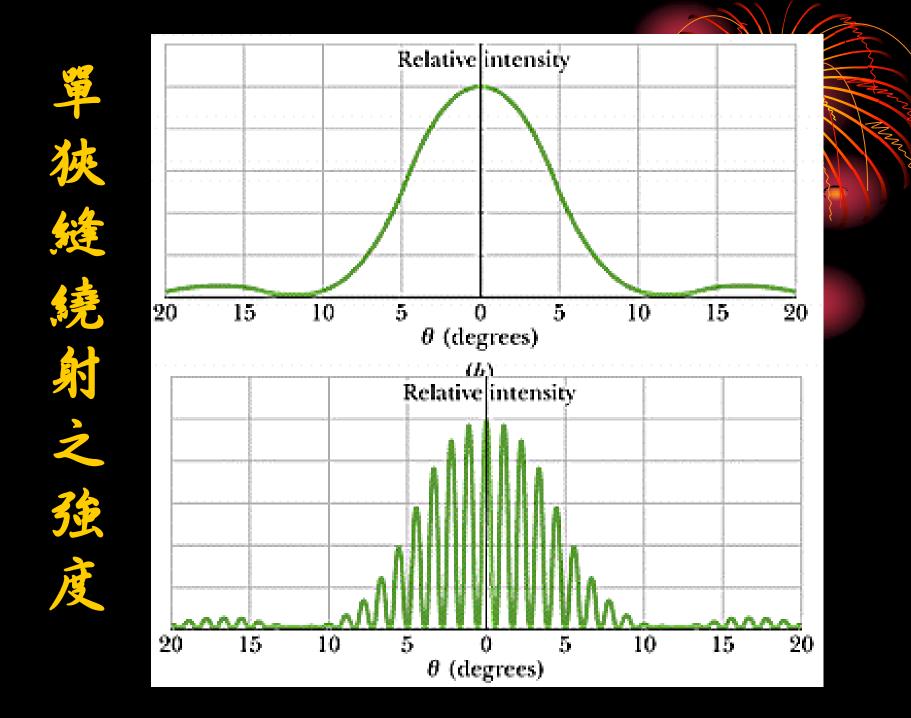


The Fresnel Bright Spot (1819)



Mervton
corpuscle
Poisson
Fresnel
wave

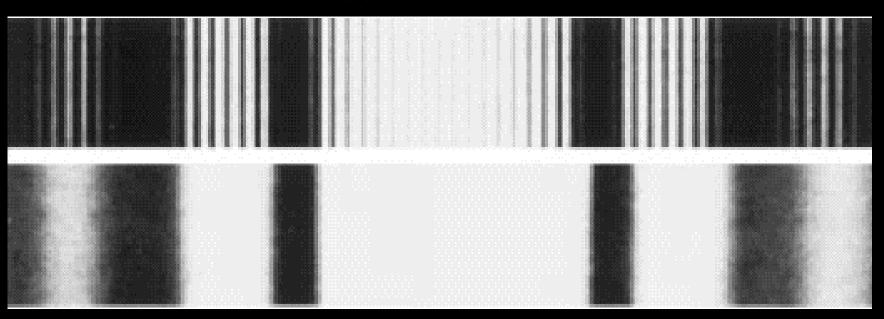




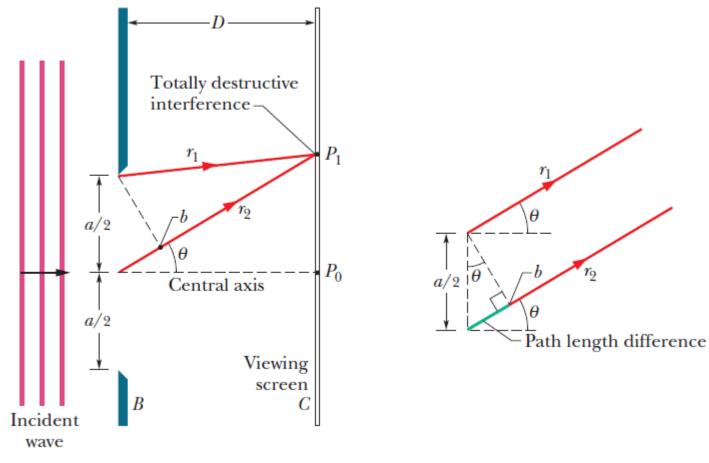
雙狹縫與單狹缝

Sonble-slit Aiffraction (with)

interferen*c*e)

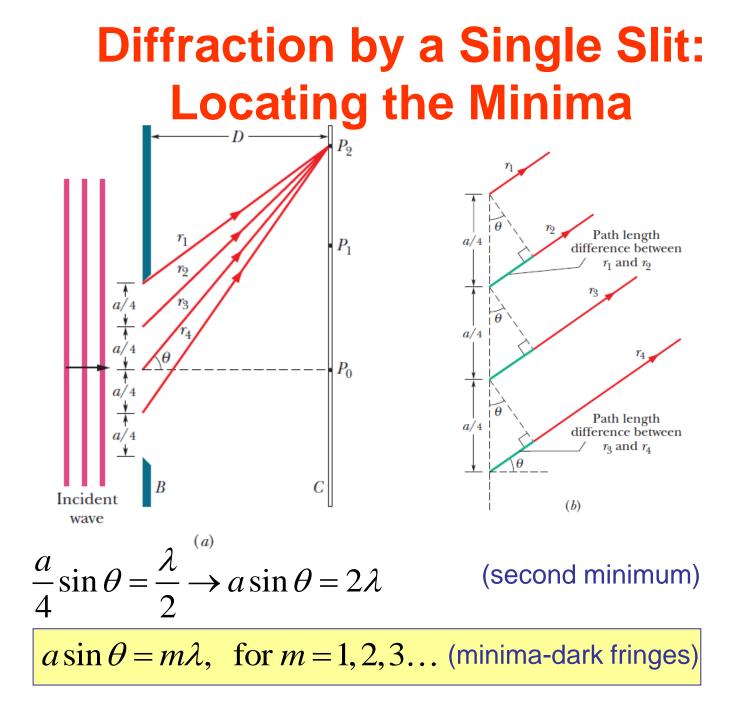


Diffraction by a Single Slit: Locating the first minimum



$$\frac{a}{2}\sin\theta = \frac{\lambda}{2} \to a\sin\theta = \lambda$$

(first minimum)



36-**42**

Ex.11-6 36-1 Slit width

(a) For what value of *a* will the first minimum for red light of wavelength $\lambda = 650$ nm appear at $\theta = 15^{\circ}$?

 $a = \frac{m\lambda}{\sin \theta} = \frac{(1)(650 \text{ nm})}{\sin 15^{\circ}}$ $= 2511 \text{ nm} \approx 2.5 \ \mu\text{m}.$

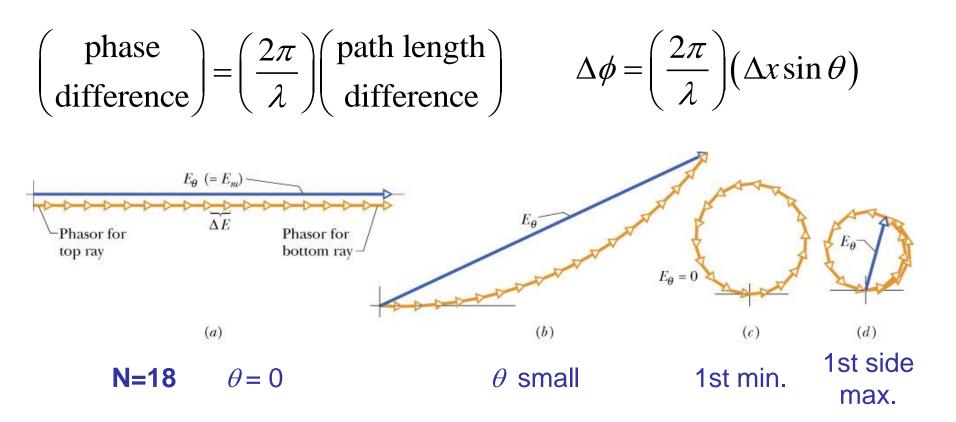
(b) What is the wavelength λ' of the light whose first side diffraction maximum is at 15°, thus coinciding with the first minimum for the red light?

 $a\sin\theta = 1.5\lambda'.$

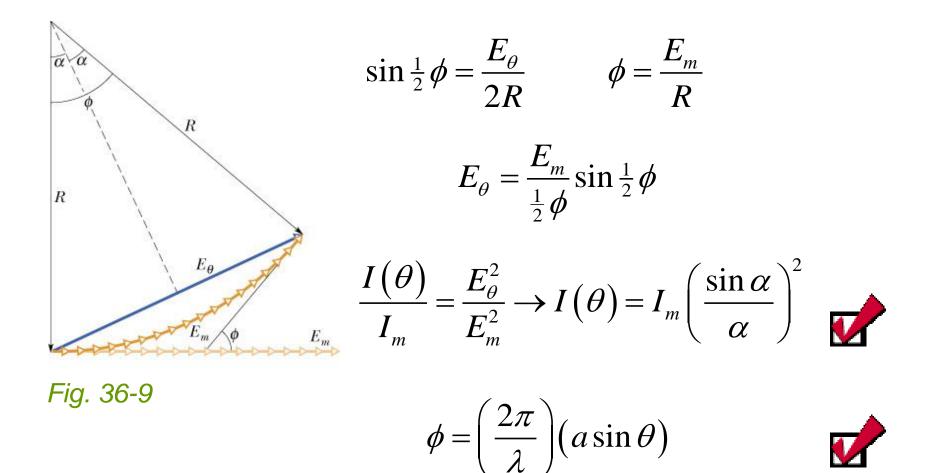
$$\lambda' = \frac{a \sin \theta}{1.5} = \frac{(2511 \text{ nm})(\sin 15^\circ)}{1.5}$$

= 430 nm.

Intensity in Single-Slit Diffraction, Qualitatively



Intensity and path length difference

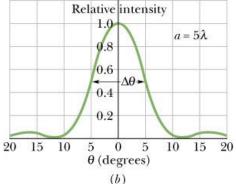


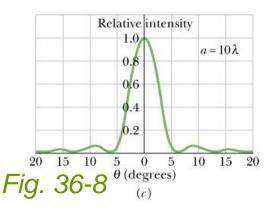
Intensity in Single-Slit Diffraction, Quantitatively



Here we will show that the intensity at the screen due to a single slit is:

$$I(\theta) = I_m \left(\frac{\sin\alpha}{\alpha}\right)^2 \quad (36-5)$$





where $\alpha = \frac{1}{2}\phi = \frac{\pi a}{\lambda}\sin\theta$ (36-6)

In Eq. 36-5, minima occur when:

$$\alpha = m\pi$$
, for $m = 1, 2, 3...$

If we put this into Eq. 36-6 we find:

$$m\pi = \frac{\pi a}{\lambda} \sin \theta$$
, for $m = 1, 2, 3...$

or $a \sin \theta = m\lambda$, for m = 1, 2, 3...(minima-dark fringes)

36-**46**

Ex.11-7 36-2

Find the intensities of the first three secondary maxima (side maxima) in the single-slit diffraction pattern of Fig. 36-1, measured as a percentage of the intensity of the central maximum.

$$\alpha = \left(m + \frac{1}{2}\right)\pi, \quad m = 1, 2, 3, \cdots$$

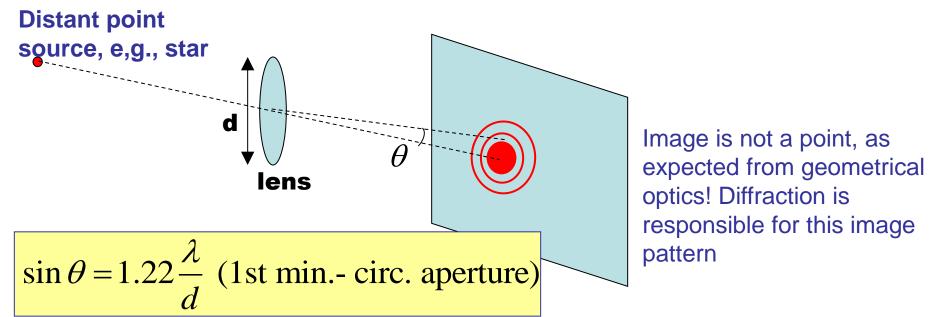
$$\frac{I}{I_m} = \left(\frac{\sin\alpha}{\alpha}\right)^2 = \left(\frac{\sin(m+\frac{1}{2})\pi}{(m+\frac{1}{2})\pi}\right)^2, \text{ for } m = 1, 2, 3, .$$

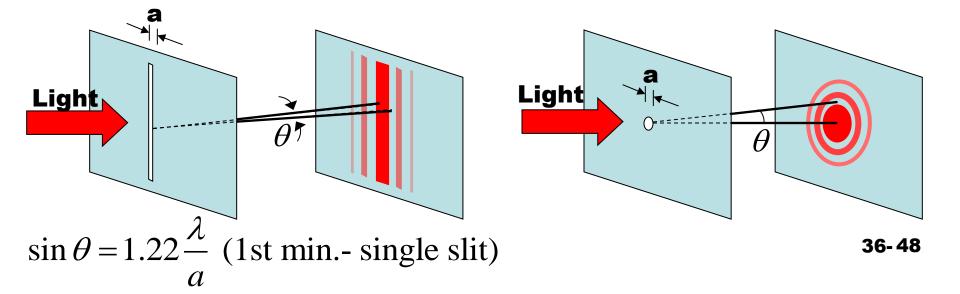
$$\frac{I_1}{I_m} = \left(\frac{\sin(1+\frac{1}{2})\pi}{(1+\frac{1}{2})\pi}\right)^2 = \left(\frac{\sin 1.5\pi}{1.5\pi}\right)^2$$

$$= 4.50 \times 10^{-2} \approx 4.5\%.$$

$$\frac{I_2}{I_m} = 1.6\%$$
 and $\frac{I_3}{I_m} = 0.83\%$

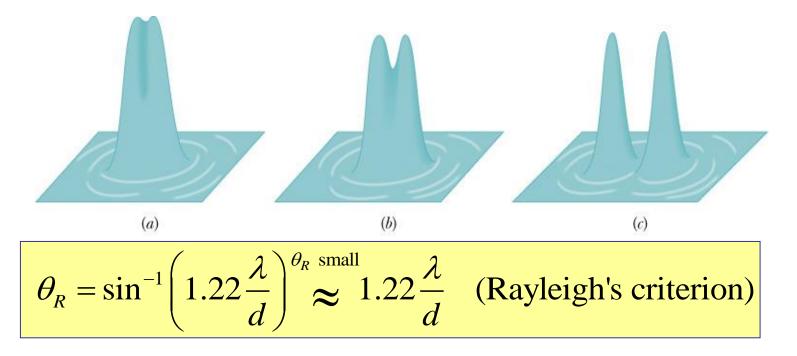
Diffraction by a Circular Aperture



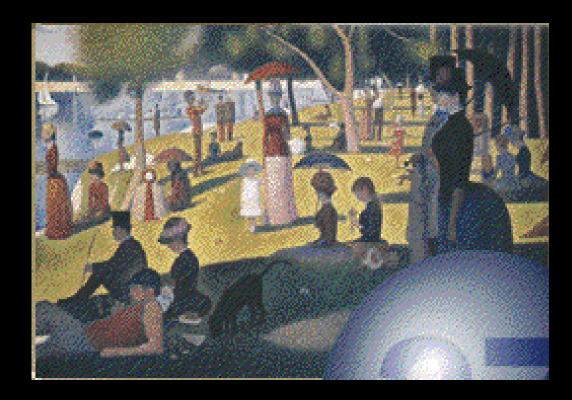


Resolvability

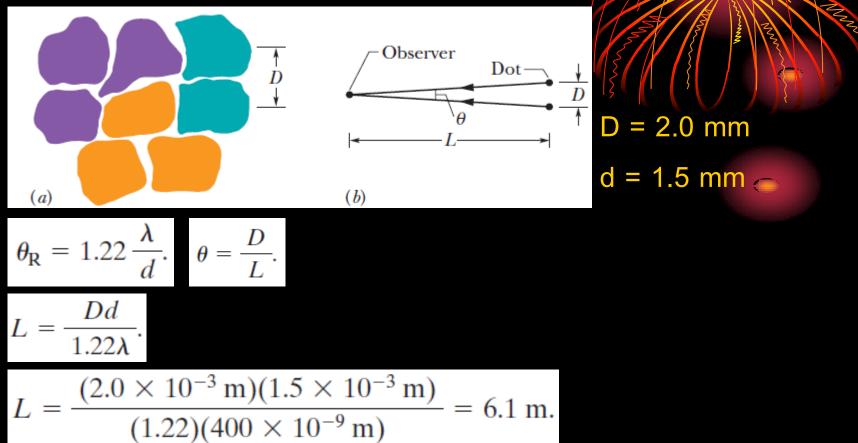
Rayleigh's Criterion: two point sources are barely resolvable if their angular separation θ_R results in the central maximum of the diffraction pattern of one source's image is centered on the first minimum of the diffraction pattern of the other source's image.



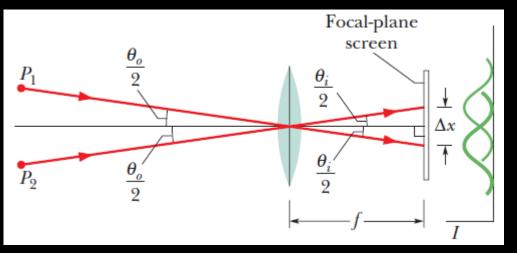
Why do the colors in a pointillism painting change with viewing distance?



Ex.11-8 36-3 pointillism

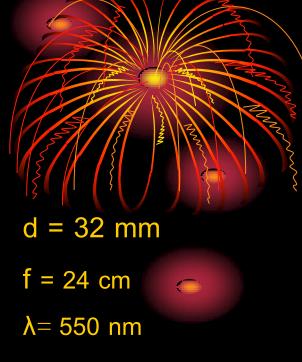


Ex.11-9 36-4



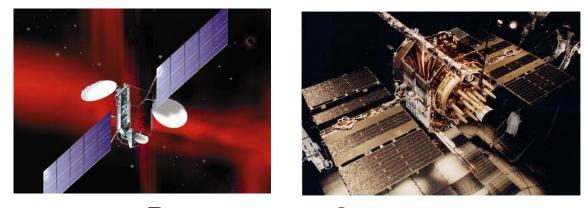
$$\theta_o = \theta_i = \theta_R = 1.22 \frac{\lambda}{d}$$
$$= \frac{(1.22)(550 \times 10^{-9} \text{ m})}{32 \times 10^{-3} \text{ m}} = 2.1 \times 10^{-5} \text{ rad.}$$

$$\Delta x = f\theta_i, \ \Delta x = (0.24 \text{ m})(2.1 \times 10^{-5} \text{ rad}) = 5.0 \ \mu\text{m}$$



The telescopes on some commercial and military surveillance satellites

Resolution of 85 cm and 10 cm respectively



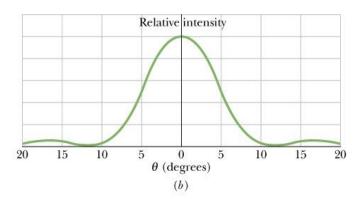
$$\frac{D}{L} = \theta_{\rm R} = 1.22 \frac{\bullet}{d}$$

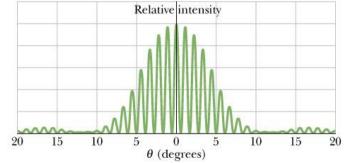
 $\lambda = 550 \times 10^{-9} \text{ m.}$ (a) $L = 400 \times 10^3 \text{ m}$, $D = 0.85 \text{ m} \rightarrow d = 0.32 \text{ m.}$ (b) $D = 0.10 \text{ m} \rightarrow d = 2.7 \text{ m.}$

Diffraction by a Double Slit

Relative intensity 20 15 10 5 0 5 10 15 20 θ (degrees) (a)

Single slit $a \sim \lambda$



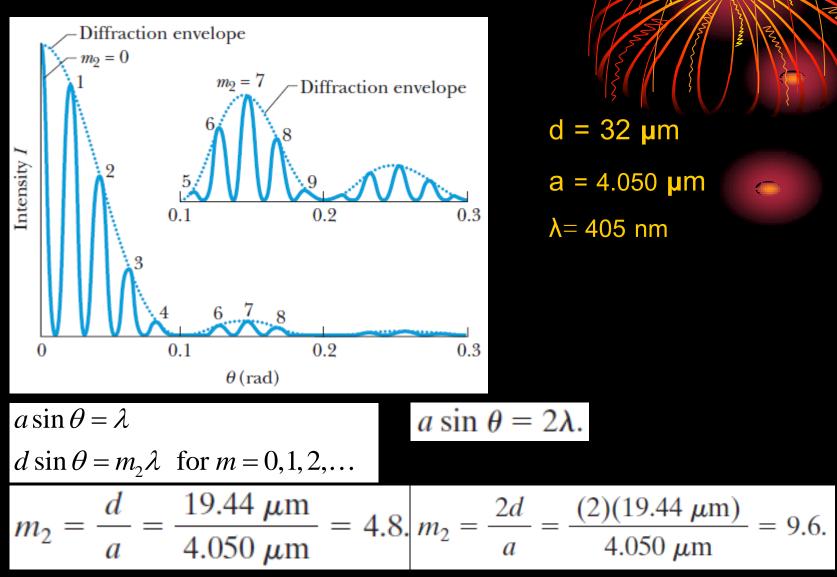


(c)

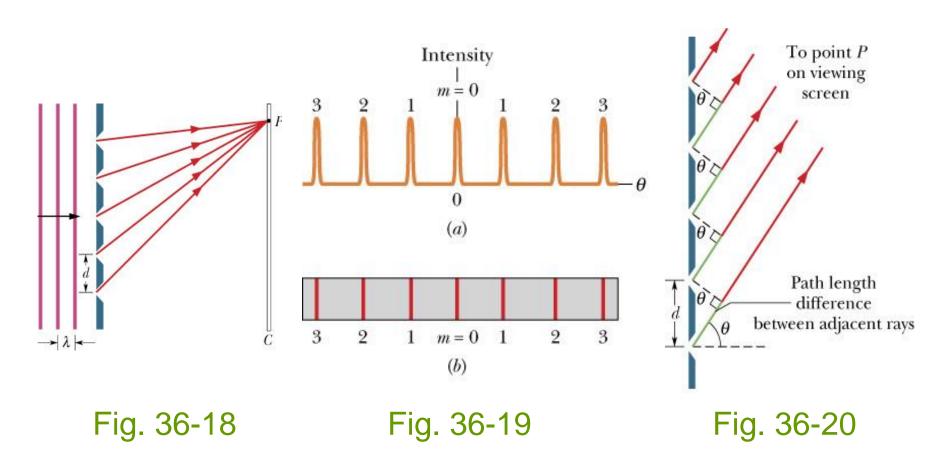
$$I(\theta) = I_m \left(\cos^2 \beta\right) \left(\frac{\sin \alpha}{\alpha}\right)^2 \text{ (double slit)} \qquad \beta = \frac{\pi d}{\lambda} \sin \theta$$
$$\alpha = \frac{\pi a}{\lambda} \sin \theta$$

36- 54

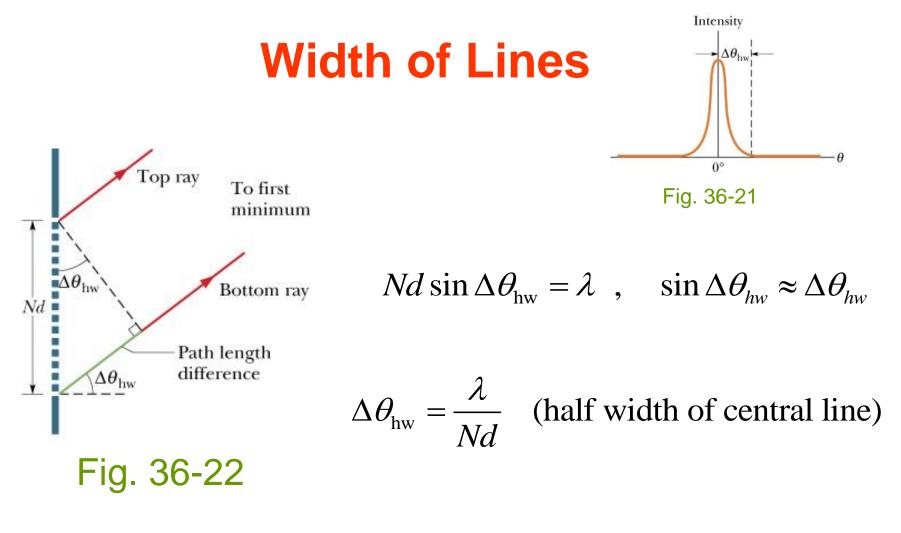
Ex.11-10 36-5



Diffraction Gratings

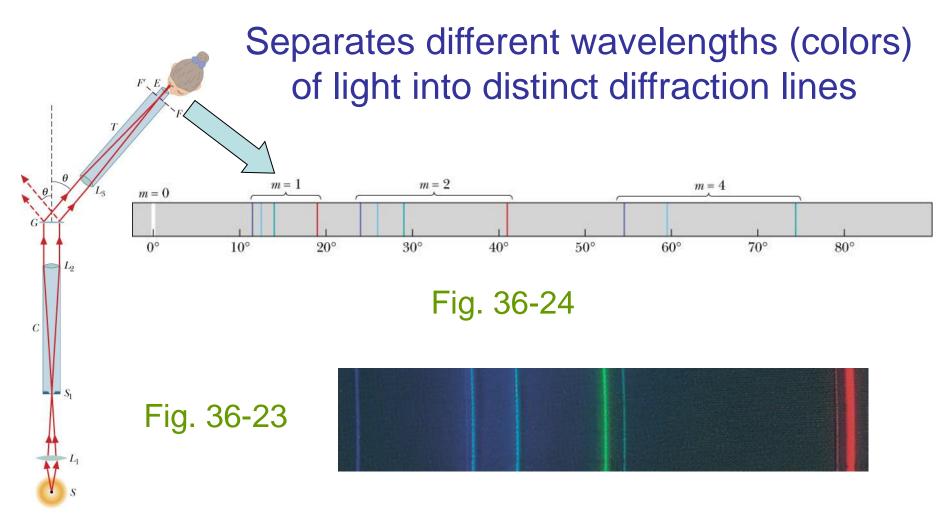


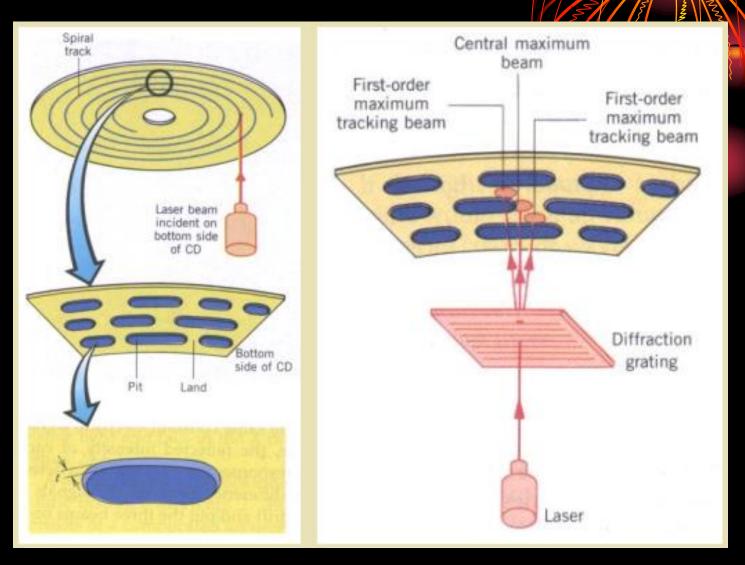
 $d\sin\theta = m\lambda$ for m = 0, 1, 2... (maxima-lines)



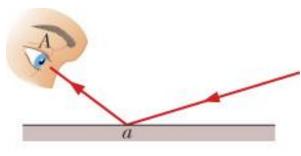
$$\Delta \theta_{\rm hw} = \frac{\lambda}{Nd\cos\theta} \text{ (half width of line at }\theta)$$

Grating Spectroscope





Optically Variable Graphics



(a)

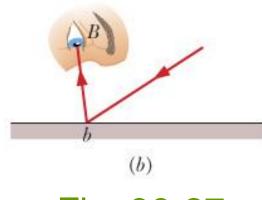
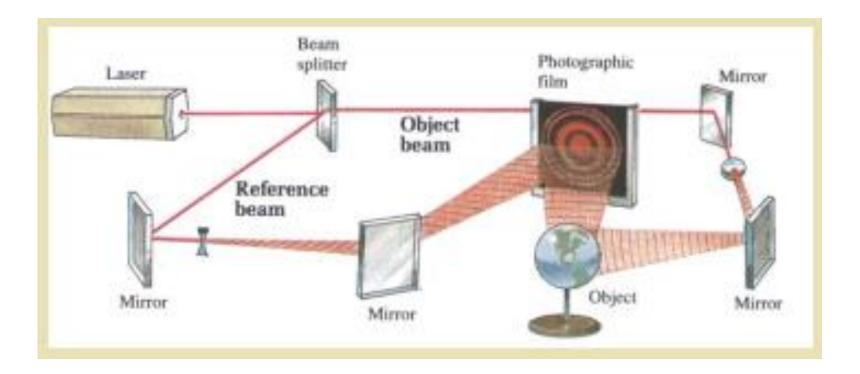
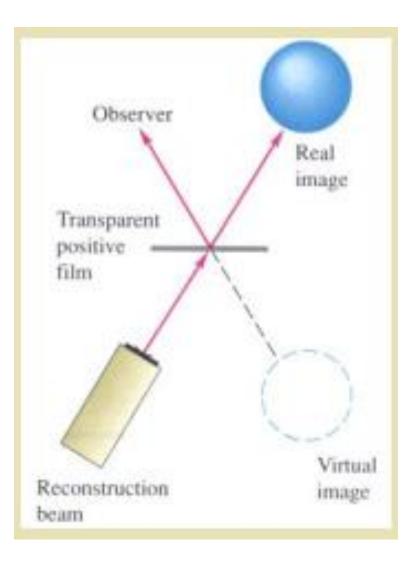


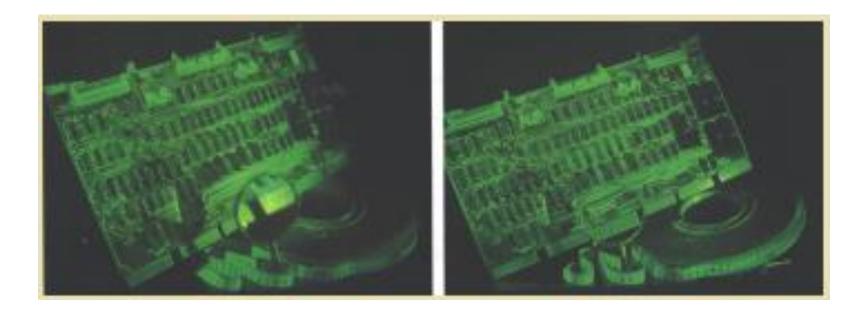
Fig. 36-27



Viewing a holograph



A Holograph



Gratings: Dispersion

 $D = \frac{\Delta \theta}{\Delta \lambda}$ (dispersion defined)

$$D = \frac{m}{d\cos\theta}$$
 (dispersion of a grating) (36-30)

Angular position of maxima $d\sin\theta = m\lambda$

Differential of first equation (what change in angle does a change in wavelength produce?)

For small angles

$$d(\cos\theta)d\theta = md\lambda$$

$$d\theta \rightarrow \Delta\theta$$
 and $d\lambda \rightarrow \Delta\lambda$
 $d(\cos\theta)\Delta\theta = m\Delta\lambda$

$$\frac{\Delta\theta}{\Delta\lambda} = \frac{m}{d\left(\cos\theta\right)} \qquad \checkmark$$

Gratings: Resolving Power

$$R = \frac{\lambda_{\text{avg}}}{\Delta \lambda} \quad \text{(resolving power defined)}$$

R = Nm (resolving power of a grating) (36-32)

Rayleigh's criterion for halfwidth to resolve two lines

Substituting for $\Delta \theta$ in calculation on previous slide

$$\Delta \theta_{\rm hw} = \frac{\lambda}{Nd\cos\theta}$$

$$\Delta \theta_{\rm hw} \rightarrow \Delta \theta$$

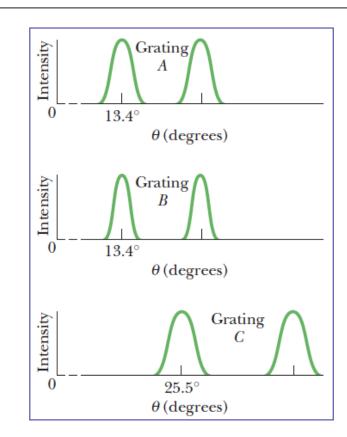
$$\rightarrow \frac{\lambda}{N} = m\Delta\lambda$$

$$R = \frac{\lambda}{\Delta \lambda} = Nm$$

Dispersion and Resolving Power Compared

Grating	Ν	d (nm)	θ	<i>D</i> (°/µm)	R
A	10 000	2540	13.4°	23.2	10 000
В	20 000	2540	13.4°	23.2	20 000
С	10000	1360	25.5°	46.3	$10\ 000$

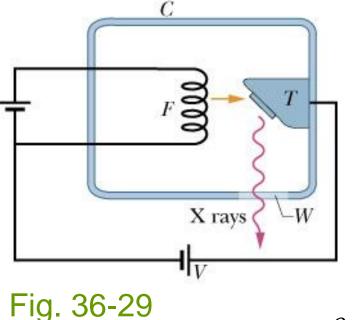
^{*a*}Data are for $\lambda = 589$ nm and m = 1.



X-Ray Diffraction

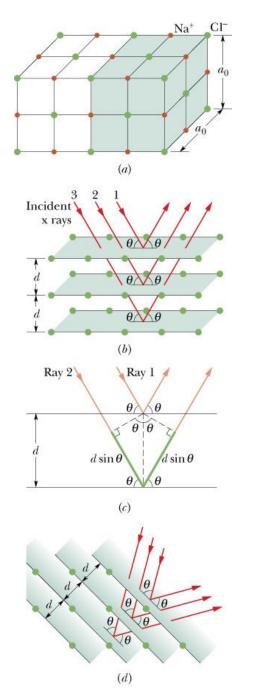
X-rays are electromagnetic radiation with wavelength ~1 Å = 10^{-10} m (visible light ~5.5x10⁻⁷ m)

X-ray generation



X-ray wavelengths to short to be resolved by a standard optical grating

$$\theta = \sin^{-1} \frac{m\lambda}{d} = \sin^{-1} \frac{(1)(0.1 \text{ nm})}{3000 \text{ nm}} = 0.0019^{\circ}$$



Diffraction of x-rays by crystal

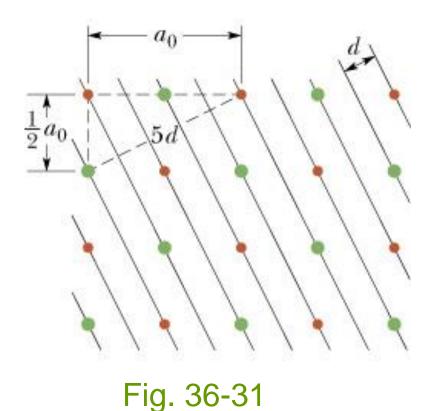
d ~ 0.1 nm

Fig. 36-30

→ three-dimensional diffraction grating

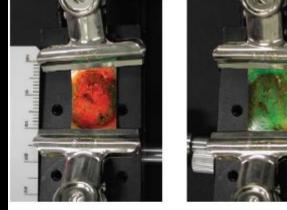
 $2d\sin\theta = m\lambda$ for m = 0, 1, 2... (Bragg's law)

X-Ray Diffraction, cont'd



 $5d = \sqrt{\frac{5}{4}a_0^2}$ or $d = \frac{a_0}{20} = 0.2236a_0$

Structural Coloring by Diffraction



(a)

(b)

